// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. // Package cmp determines equality of values. // // This package is intended to be a more powerful and safer alternative to // reflect.DeepEqual for comparing whether two values are semantically equal. // It is intended to only be used in tests, as performance is not a goal and // it may panic if it cannot compare the values. Its propensity towards // panicking means that its unsuitable for production environments where a // spurious panic may be fatal. // // The primary features of cmp are: // // • When the default behavior of equality does not suit the needs of the test, // custom equality functions can override the equality operation. // For example, an equality function may report floats as equal so long as they // are within some tolerance of each other. // // • Types that have an Equal method may use that method to determine equality. // This allows package authors to determine the equality operation for the types // that they define. // // • If no custom equality functions are used and no Equal method is defined, // equality is determined by recursively comparing the primitive kinds on both // values, much like reflect.DeepEqual. Unlike reflect.DeepEqual, unexported // fields are not compared by default; they result in panics unless suppressed // by using an Ignore option (see cmpopts.IgnoreUnexported) or explicitly // compared using the Exporter option. package cmp import ( "fmt" "reflect" "strings" "github.com/google/go-cmp/cmp/internal/diff" "github.com/google/go-cmp/cmp/internal/flags" "github.com/google/go-cmp/cmp/internal/function" "github.com/google/go-cmp/cmp/internal/value" ) // Equal reports whether x and y are equal by recursively applying the // following rules in the given order to x and y and all of their sub-values: // // • Let S be the set of all Ignore, Transformer, and Comparer options that // remain after applying all path filters, value filters, and type filters. // If at least one Ignore exists in S, then the comparison is ignored. // If the number of Transformer and Comparer options in S is greater than one, // then Equal panics because it is ambiguous which option to use. // If S contains a single Transformer, then use that to transform the current // values and recursively call Equal on the output values. // If S contains a single Comparer, then use that to compare the current values. // Otherwise, evaluation proceeds to the next rule. // // • If the values have an Equal method of the form "(T) Equal(T) bool" or // "(T) Equal(I) bool" where T is assignable to I, then use the result of // x.Equal(y) even if x or y is nil. Otherwise, no such method exists and // evaluation proceeds to the next rule. // // • Lastly, try to compare x and y based on their basic kinds. // Simple kinds like booleans, integers, floats, complex numbers, strings, and // channels are compared using the equivalent of the == operator in Go. // Functions are only equal if they are both nil, otherwise they are unequal. // // Structs are equal if recursively calling Equal on all fields report equal. // If a struct contains unexported fields, Equal panics unless an Ignore option // (e.g., cmpopts.IgnoreUnexported) ignores that field or the Exporter option // explicitly permits comparing the unexported field. // // Slices are equal if they are both nil or both non-nil, where recursively // calling Equal on all non-ignored slice or array elements report equal. // Empty non-nil slices and nil slices are not equal; to equate empty slices, // consider using cmpopts.EquateEmpty. // // Maps are equal if they are both nil or both non-nil, where recursively // calling Equal on all non-ignored map entries report equal. // Map keys are equal according to the == operator. // To use custom comparisons for map keys, consider using cmpopts.SortMaps. // Empty non-nil maps and nil maps are not equal; to equate empty maps, // consider using cmpopts.EquateEmpty. // // Pointers and interfaces are equal if they are both nil or both non-nil, // where they have the same underlying concrete type and recursively // calling Equal on the underlying values reports equal. // // Before recursing into a pointer, slice element, or map, the current path // is checked to detect whether the address has already been visited. // If there is a cycle, then the pointed at values are considered equal // only if both addresses were previously visited in the same path step. func Equal(x, y interface{}, opts ...Option) bool { s := newState(opts) s.compareAny(rootStep(x, y)) return s.result.Equal() } // Diff returns a human-readable report of the differences between two values. // It returns an empty string if and only if Equal returns true for the same // input values and options. // // The output is displayed as a literal in pseudo-Go syntax. // At the start of each line, a "-" prefix indicates an element removed from x, // a "+" prefix to indicates an element added to y, and the lack of a prefix // indicates an element common to both x and y. If possible, the output // uses fmt.Stringer.String or error.Error methods to produce more humanly // readable outputs. In such cases, the string is prefixed with either an // 's' or 'e' character, respectively, to indicate that the method was called. // // Do not depend on this output being stable. If you need the ability to // programmatically interpret the difference, consider using a custom Reporter. func Diff(x, y interface{}, opts ...Option) string { s := newState(opts) // Optimization: If there are no other reporters, we can optimize for the // common case where the result is equal (and thus no reported difference). // This avoids the expensive construction of a difference tree. if len(s.reporters) == 0 { s.compareAny(rootStep(x, y)) if s.result.Equal() { return "" } s.result = diff.Result{} // Reset results } r := new(defaultReporter) s.reporters = append(s.reporters, reporter{r}) s.compareAny(rootStep(x, y)) d := r.String() if (d == "") != s.result.Equal() { panic("inconsistent difference and equality results") } return d } // rootStep constructs the first path step. If x and y have differing types, // then they are stored within an empty interface type. func rootStep(x, y interface{}) PathStep { vx := reflect.ValueOf(x) vy := reflect.ValueOf(y) // If the inputs are different types, auto-wrap them in an empty interface // so that they have the same parent type. var t reflect.Type if !vx.IsValid() || !vy.IsValid() || vx.Type() != vy.Type() { t = reflect.TypeOf((*interface{})(nil)).Elem() if vx.IsValid() { vvx := reflect.New(t).Elem() vvx.Set(vx) vx = vvx } if vy.IsValid() { vvy := reflect.New(t).Elem() vvy.Set(vy) vy = vvy } } else { t = vx.Type() } return &pathStep{t, vx, vy} } type state struct { // These fields represent the "comparison state". // Calling statelessCompare must not result in observable changes to these. result diff.Result // The current result of comparison curPath Path // The current path in the value tree curPtrs pointerPath // The current set of visited pointers reporters []reporter // Optional reporters // recChecker checks for infinite cycles applying the same set of // transformers upon the output of itself. recChecker recChecker // dynChecker triggers pseudo-random checks for option correctness. // It is safe for statelessCompare to mutate this value. dynChecker dynChecker // These fields, once set by processOption, will not change. exporters []exporter // List of exporters for structs with unexported fields opts Options // List of all fundamental and filter options } func newState(opts []Option) *state { // Always ensure a validator option exists to validate the inputs. s := &state{opts: Options{validator{}}} s.curPtrs.Init() s.processOption(Options(opts)) return s } func (s *state) processOption(opt Option) { switch opt := opt.(type) { case nil: case Options: for _, o := range opt { s.processOption(o) } case coreOption: type filtered interface { isFiltered() bool } if fopt, ok := opt.(filtered); ok && !fopt.isFiltered() { panic(fmt.Sprintf("cannot use an unfiltered option: %v", opt)) } s.opts = append(s.opts, opt) case exporter: s.exporters = append(s.exporters, opt) case reporter: s.reporters = append(s.reporters, opt) default: panic(fmt.Sprintf("unknown option %T", opt)) } } // statelessCompare compares two values and returns the result. // This function is stateless in that it does not alter the current result, // or output to any registered reporters. func (s *state) statelessCompare(step PathStep) diff.Result { // We do not save and restore curPath and curPtrs because all of the // compareX methods should properly push and pop from them. // It is an implementation bug if the contents of the paths differ from // when calling this function to when returning from it. oldResult, oldReporters := s.result, s.reporters s.result = diff.Result{} // Reset result s.reporters = nil // Remove reporters to avoid spurious printouts s.compareAny(step) res := s.result s.result, s.reporters = oldResult, oldReporters return res } func (s *state) compareAny(step PathStep) { // Update the path stack. s.curPath.push(step) defer s.curPath.pop() for _, r := range s.reporters { r.PushStep(step) defer r.PopStep() } s.recChecker.Check(s.curPath) // Cycle-detection for slice elements (see NOTE in compareSlice). t := step.Type() vx, vy := step.Values() if si, ok := step.(SliceIndex); ok && si.isSlice && vx.IsValid() && vy.IsValid() { px, py := vx.Addr(), vy.Addr() if eq, visited := s.curPtrs.Push(px, py); visited { s.report(eq, reportByCycle) return } defer s.curPtrs.Pop(px, py) } // Rule 1: Check whether an option applies on this node in the value tree. if s.tryOptions(t, vx, vy) { return } // Rule 2: Check whether the type has a valid Equal method. if s.tryMethod(t, vx, vy) { return } // Rule 3: Compare based on the underlying kind. switch t.Kind() { case reflect.Bool: s.report(vx.Bool() == vy.Bool(), 0) case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: s.report(vx.Int() == vy.Int(), 0) case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: s.report(vx.Uint() == vy.Uint(), 0) case reflect.Float32, reflect.Float64: s.report(vx.Float() == vy.Float(), 0) case reflect.Complex64, reflect.Complex128: s.report(vx.Complex() == vy.Complex(), 0) case reflect.String: s.report(vx.String() == vy.String(), 0) case reflect.Chan, reflect.UnsafePointer: s.report(vx.Pointer() == vy.Pointer(), 0) case reflect.Func: s.report(vx.IsNil() && vy.IsNil(), 0) case reflect.Struct: s.compareStruct(t, vx, vy) case reflect.Slice, reflect.Array: s.compareSlice(t, vx, vy) case reflect.Map: s.compareMap(t, vx, vy) case reflect.Ptr: s.comparePtr(t, vx, vy) case reflect.Interface: s.compareInterface(t, vx, vy) default: panic(fmt.Sprintf("%v kind not handled", t.Kind())) } } func (s *state) tryOptions(t reflect.Type, vx, vy reflect.Value) bool { // Evaluate all filters and apply the remaining options. if opt := s.opts.filter(s, t, vx, vy); opt != nil { opt.apply(s, vx, vy) return true } return false } func (s *state) tryMethod(t reflect.Type, vx, vy reflect.Value) bool { // Check if this type even has an Equal method. m, ok := t.MethodByName("Equal") if !ok || !function.IsType(m.Type, function.EqualAssignable) { return false } eq := s.callTTBFunc(m.Func, vx, vy) s.report(eq, reportByMethod) return true } func (s *state) callTRFunc(f, v reflect.Value, step Transform) reflect.Value { v = sanitizeValue(v, f.Type().In(0)) if !s.dynChecker.Next() { return f.Call([]reflect.Value{v})[0] } // Run the function twice and ensure that we get the same results back. // We run in goroutines so that the race detector (if enabled) can detect // unsafe mutations to the input. c := make(chan reflect.Value) go detectRaces(c, f, v) got := <-c want := f.Call([]reflect.Value{v})[0] if step.vx, step.vy = got, want; !s.statelessCompare(step).Equal() { // To avoid false-positives with non-reflexive equality operations, // we sanity check whether a value is equal to itself. if step.vx, step.vy = want, want; !s.statelessCompare(step).Equal() { return want } panic(fmt.Sprintf("non-deterministic function detected: %s", function.NameOf(f))) } return want } func (s *state) callTTBFunc(f, x, y reflect.Value) bool { x = sanitizeValue(x, f.Type().In(0)) y = sanitizeValue(y, f.Type().In(1)) if !s.dynChecker.Next() { return f.Call([]reflect.Value{x, y})[0].Bool() } // Swapping the input arguments is sufficient to check that // f is symmetric and deterministic. // We run in goroutines so that the race detector (if enabled) can detect // unsafe mutations to the input. c := make(chan reflect.Value) go detectRaces(c, f, y, x) got := <-c want := f.Call([]reflect.Value{x, y})[0].Bool() if !got.IsValid() || got.Bool() != want { panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", function.NameOf(f))) } return want } func detectRaces(c chan<- reflect.Value, f reflect.Value, vs ...reflect.Value) { var ret reflect.Value defer func() { recover() // Ignore panics, let the other call to f panic instead c <- ret }() ret = f.Call(vs)[0] } // sanitizeValue converts nil interfaces of type T to those of type R, // assuming that T is assignable to R. // Otherwise, it returns the input value as is. func sanitizeValue(v reflect.Value, t reflect.Type) reflect.Value { // TODO(≥go1.10): Workaround for reflect bug (https://golang.org/issue/22143). if !flags.AtLeastGo110 { if v.Kind() == reflect.Interface && v.IsNil() && v.Type() != t { return reflect.New(t).Elem() } } return v } func (s *state) compareStruct(t reflect.Type, vx, vy reflect.Value) { var addr bool var vax, vay reflect.Value // Addressable versions of vx and vy var mayForce, mayForceInit bool step := StructField{&structField{}} for i := 0; i < t.NumField(); i++ { step.typ = t.Field(i).Type step.vx = vx.Field(i) step.vy = vy.Field(i) step.name = t.Field(i).Name step.idx = i step.unexported = !isExported(step.name) if step.unexported { if step.name == "_" { continue } // Defer checking of unexported fields until later to give an // Ignore a chance to ignore the field. if !vax.IsValid() || !vay.IsValid() { // For retrieveUnexportedField to work, the parent struct must // be addressable. Create a new copy of the values if // necessary to make them addressable. addr = vx.CanAddr() || vy.CanAddr() vax = makeAddressable(vx) vay = makeAddressable(vy) } if !mayForceInit { for _, xf := range s.exporters { mayForce = mayForce || xf(t) } mayForceInit = true } step.mayForce = mayForce step.paddr = addr step.pvx = vax step.pvy = vay step.field = t.Field(i) } s.compareAny(step) } } func (s *state) compareSlice(t reflect.Type, vx, vy reflect.Value) { isSlice := t.Kind() == reflect.Slice if isSlice && (vx.IsNil() || vy.IsNil()) { s.report(vx.IsNil() && vy.IsNil(), 0) return } // NOTE: It is incorrect to call curPtrs.Push on the slice header pointer // since slices represents a list of pointers, rather than a single pointer. // The pointer checking logic must be handled on a per-element basis // in compareAny. // // A slice header (see reflect.SliceHeader) in Go is a tuple of a starting // pointer P, a length N, and a capacity C. Supposing each slice element has // a memory size of M, then the slice is equivalent to the list of pointers: // [P+i*M for i in range(N)] // // For example, v[:0] and v[:1] are slices with the same starting pointer, // but they are clearly different values. Using the slice pointer alone // violates the assumption that equal pointers implies equal values. step := SliceIndex{&sliceIndex{pathStep: pathStep{typ: t.Elem()}, isSlice: isSlice}} withIndexes := func(ix, iy int) SliceIndex { if ix >= 0 { step.vx, step.xkey = vx.Index(ix), ix } else { step.vx, step.xkey = reflect.Value{}, -1 } if iy >= 0 { step.vy, step.ykey = vy.Index(iy), iy } else { step.vy, step.ykey = reflect.Value{}, -1 } return step } // Ignore options are able to ignore missing elements in a slice. // However, detecting these reliably requires an optimal differencing // algorithm, for which diff.Difference is not. // // Instead, we first iterate through both slices to detect which elements // would be ignored if standing alone. The index of non-discarded elements // are stored in a separate slice, which diffing is then performed on. var indexesX, indexesY []int var ignoredX, ignoredY []bool for ix := 0; ix < vx.Len(); ix++ { ignored := s.statelessCompare(withIndexes(ix, -1)).NumDiff == 0 if !ignored { indexesX = append(indexesX, ix) } ignoredX = append(ignoredX, ignored) } for iy := 0; iy < vy.Len(); iy++ { ignored := s.statelessCompare(withIndexes(-1, iy)).NumDiff == 0 if !ignored { indexesY = append(indexesY, iy) } ignoredY = append(ignoredY, ignored) } // Compute an edit-script for slices vx and vy (excluding ignored elements). edits := diff.Difference(len(indexesX), len(indexesY), func(ix, iy int) diff.Result { return s.statelessCompare(withIndexes(indexesX[ix], indexesY[iy])) }) // Replay the ignore-scripts and the edit-script. var ix, iy int for ix < vx.Len() || iy < vy.Len() { var e diff.EditType switch { case ix < len(ignoredX) && ignoredX[ix]: e = diff.UniqueX case iy < len(ignoredY) && ignoredY[iy]: e = diff.UniqueY default: e, edits = edits[0], edits[1:] } switch e { case diff.UniqueX: s.compareAny(withIndexes(ix, -1)) ix++ case diff.UniqueY: s.compareAny(withIndexes(-1, iy)) iy++ default: s.compareAny(withIndexes(ix, iy)) ix++ iy++ } } } func (s *state) compareMap(t reflect.Type, vx, vy reflect.Value) { if vx.IsNil() || vy.IsNil() { s.report(vx.IsNil() && vy.IsNil(), 0) return } // Cycle-detection for maps. if eq, visited := s.curPtrs.Push(vx, vy); visited { s.report(eq, reportByCycle) return } defer s.curPtrs.Pop(vx, vy) // We combine and sort the two map keys so that we can perform the // comparisons in a deterministic order. step := MapIndex{&mapIndex{pathStep: pathStep{typ: t.Elem()}}} for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) { step.vx = vx.MapIndex(k) step.vy = vy.MapIndex(k) step.key = k if !step.vx.IsValid() && !step.vy.IsValid() { // It is possible for both vx and vy to be invalid if the // key contained a NaN value in it. // // Even with the ability to retrieve NaN keys in Go 1.12, // there still isn't a sensible way to compare the values since // a NaN key may map to multiple unordered values. // The most reasonable way to compare NaNs would be to compare the // set of values. However, this is impossible to do efficiently // since set equality is provably an O(n^2) operation given only // an Equal function. If we had a Less function or Hash function, // this could be done in O(n*log(n)) or O(n), respectively. // // Rather than adding complex logic to deal with NaNs, make it // the user's responsibility to compare such obscure maps. const help = "consider providing a Comparer to compare the map" panic(fmt.Sprintf("%#v has map key with NaNs\n%s", s.curPath, help)) } s.compareAny(step) } } func (s *state) comparePtr(t reflect.Type, vx, vy reflect.Value) { if vx.IsNil() || vy.IsNil() { s.report(vx.IsNil() && vy.IsNil(), 0) return } // Cycle-detection for pointers. if eq, visited := s.curPtrs.Push(vx, vy); visited { s.report(eq, reportByCycle) return } defer s.curPtrs.Pop(vx, vy) vx, vy = vx.Elem(), vy.Elem() s.compareAny(Indirect{&indirect{pathStep{t.Elem(), vx, vy}}}) } func (s *state) compareInterface(t reflect.Type, vx, vy reflect.Value) { if vx.IsNil() || vy.IsNil() { s.report(vx.IsNil() && vy.IsNil(), 0) return } vx, vy = vx.Elem(), vy.Elem() if vx.Type() != vy.Type() { s.report(false, 0) return } s.compareAny(TypeAssertion{&typeAssertion{pathStep{vx.Type(), vx, vy}}}) } func (s *state) report(eq bool, rf resultFlags) { if rf&reportByIgnore == 0 { if eq { s.result.NumSame++ rf |= reportEqual } else { s.result.NumDiff++ rf |= reportUnequal } } for _, r := range s.reporters { r.Report(Result{flags: rf}) } } // recChecker tracks the state needed to periodically perform checks that // user provided transformers are not stuck in an infinitely recursive cycle. type recChecker struct{ next int } // Check scans the Path for any recursive transformers and panics when any // recursive transformers are detected. Note that the presence of a // recursive Transformer does not necessarily imply an infinite cycle. // As such, this check only activates after some minimal number of path steps. func (rc *recChecker) Check(p Path) { const minLen = 1 << 16 if rc.next == 0 { rc.next = minLen } if len(p) < rc.next { return } rc.next <<= 1 // Check whether the same transformer has appeared at least twice. var ss []string m := map[Option]int{} for _, ps := range p { if t, ok := ps.(Transform); ok { t := t.Option() if m[t] == 1 { // Transformer was used exactly once before tf := t.(*transformer).fnc.Type() ss = append(ss, fmt.Sprintf("%v: %v => %v", t, tf.In(0), tf.Out(0))) } m[t]++ } } if len(ss) > 0 { const warning = "recursive set of Transformers detected" const help = "consider using cmpopts.AcyclicTransformer" set := strings.Join(ss, "\n\t") panic(fmt.Sprintf("%s:\n\t%s\n%s", warning, set, help)) } } // dynChecker tracks the state needed to periodically perform checks that // user provided functions are symmetric and deterministic. // The zero value is safe for immediate use. type dynChecker struct{ curr, next int } // Next increments the state and reports whether a check should be performed. // // Checks occur every Nth function call, where N is a triangular number: // 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 ... // See https://en.wikipedia.org/wiki/Triangular_number // // This sequence ensures that the cost of checks drops significantly as // the number of functions calls grows larger. func (dc *dynChecker) Next() bool { ok := dc.curr == dc.next if ok { dc.curr = 0 dc.next++ } dc.curr++ return ok } // makeAddressable returns a value that is always addressable. // It returns the input verbatim if it is already addressable, // otherwise it creates a new value and returns an addressable copy. func makeAddressable(v reflect.Value) reflect.Value { if v.CanAddr() { return v } vc := reflect.New(v.Type()).Elem() vc.Set(v) return vc }