// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssa_test import ( "bytes" "go/ast" "go/importer" "go/parser" "go/token" "go/types" "os" "reflect" "sort" "strings" "testing" "golang.org/x/tools/go/loader" "golang.org/x/tools/go/ssa" "golang.org/x/tools/go/ssa/ssautil" ) func isEmpty(f *ssa.Function) bool { return f.Blocks == nil } // Tests that programs partially loaded from gc object files contain // functions with no code for the external portions, but are otherwise ok. func TestBuildPackage(t *testing.T) { input := ` package main import ( "bytes" "io" "testing" ) func main() { var t testing.T t.Parallel() // static call to external declared method t.Fail() // static call to promoted external declared method testing.Short() // static call to external package-level function var w io.Writer = new(bytes.Buffer) w.Write(nil) // interface invoke of external declared method } ` // Parse the file. fset := token.NewFileSet() f, err := parser.ParseFile(fset, "input.go", input, 0) if err != nil { t.Error(err) return } // Build an SSA program from the parsed file. // Load its dependencies from gc binary export data. mainPkg, _, err := ssautil.BuildPackage(&types.Config{Importer: importer.Default()}, fset, types.NewPackage("main", ""), []*ast.File{f}, ssa.SanityCheckFunctions) if err != nil { t.Error(err) return } // The main package, its direct and indirect dependencies are loaded. deps := []string{ // directly imported dependencies: "bytes", "io", "testing", // indirect dependencies mentioned by // the direct imports' export data "sync", "unicode", "time", } prog := mainPkg.Prog all := prog.AllPackages() if len(all) <= len(deps) { t.Errorf("unexpected set of loaded packages: %q", all) } for _, path := range deps { pkg := prog.ImportedPackage(path) if pkg == nil { t.Errorf("package not loaded: %q", path) continue } // External packages should have no function bodies (except for wrappers). isExt := pkg != mainPkg // init() if isExt && !isEmpty(pkg.Func("init")) { t.Errorf("external package %s has non-empty init", pkg) } else if !isExt && isEmpty(pkg.Func("init")) { t.Errorf("main package %s has empty init", pkg) } for _, mem := range pkg.Members { switch mem := mem.(type) { case *ssa.Function: // Functions at package level. if isExt && !isEmpty(mem) { t.Errorf("external function %s is non-empty", mem) } else if !isExt && isEmpty(mem) { t.Errorf("function %s is empty", mem) } case *ssa.Type: // Methods of named types T. // (In this test, all exported methods belong to *T not T.) if !isExt { t.Fatalf("unexpected name type in main package: %s", mem) } mset := prog.MethodSets.MethodSet(types.NewPointer(mem.Type())) for i, n := 0, mset.Len(); i < n; i++ { m := prog.MethodValue(mset.At(i)) // For external types, only synthetic wrappers have code. expExt := !strings.Contains(m.Synthetic, "wrapper") if expExt && !isEmpty(m) { t.Errorf("external method %s is non-empty: %s", m, m.Synthetic) } else if !expExt && isEmpty(m) { t.Errorf("method function %s is empty: %s", m, m.Synthetic) } } } } } expectedCallee := []string{ "(*testing.T).Parallel", "(*testing.common).Fail", "testing.Short", "N/A", } callNum := 0 for _, b := range mainPkg.Func("main").Blocks { for _, instr := range b.Instrs { switch instr := instr.(type) { case ssa.CallInstruction: call := instr.Common() if want := expectedCallee[callNum]; want != "N/A" { got := call.StaticCallee().String() if want != got { t.Errorf("call #%d from main.main: got callee %s, want %s", callNum, got, want) } } callNum++ } } } if callNum != 4 { t.Errorf("in main.main: got %d calls, want %d", callNum, 4) } } // TestRuntimeTypes tests that (*Program).RuntimeTypes() includes all necessary types. func TestRuntimeTypes(t *testing.T) { tests := []struct { input string want []string }{ // An exported package-level type is needed. {`package A; type T struct{}; func (T) f() {}`, []string{"*p.T", "p.T"}, }, // An unexported package-level type is not needed. {`package B; type t struct{}; func (t) f() {}`, nil, }, // Subcomponents of type of exported package-level var are needed. {`package C; import "bytes"; var V struct {*bytes.Buffer}`, []string{"*bytes.Buffer", "*struct{*bytes.Buffer}", "struct{*bytes.Buffer}"}, }, // Subcomponents of type of unexported package-level var are not needed. {`package D; import "bytes"; var v struct {*bytes.Buffer}`, nil, }, // Subcomponents of type of exported package-level function are needed. {`package E; import "bytes"; func F(struct {*bytes.Buffer}) {}`, []string{"*bytes.Buffer", "struct{*bytes.Buffer}"}, }, // Subcomponents of type of unexported package-level function are not needed. {`package F; import "bytes"; func f(struct {*bytes.Buffer}) {}`, nil, }, // Subcomponents of type of exported method of uninstantiated unexported type are not needed. {`package G; import "bytes"; type x struct{}; func (x) G(struct {*bytes.Buffer}) {}; var v x`, nil, }, // ...unless used by MakeInterface. {`package G2; import "bytes"; type x struct{}; func (x) G(struct {*bytes.Buffer}) {}; var v interface{} = x{}`, []string{"*bytes.Buffer", "*p.x", "p.x", "struct{*bytes.Buffer}"}, }, // Subcomponents of type of unexported method are not needed. {`package I; import "bytes"; type X struct{}; func (X) G(struct {*bytes.Buffer}) {}`, []string{"*bytes.Buffer", "*p.X", "p.X", "struct{*bytes.Buffer}"}, }, // Local types aren't needed. {`package J; import "bytes"; func f() { type T struct {*bytes.Buffer}; var t T; _ = t }`, nil, }, // ...unless used by MakeInterface. {`package K; import "bytes"; func f() { type T struct {*bytes.Buffer}; _ = interface{}(T{}) }`, []string{"*bytes.Buffer", "*p.T", "p.T"}, }, // Types used as operand of MakeInterface are needed. {`package L; import "bytes"; func f() { _ = interface{}(struct{*bytes.Buffer}{}) }`, []string{"*bytes.Buffer", "struct{*bytes.Buffer}"}, }, // MakeInterface is optimized away when storing to a blank. {`package M; import "bytes"; var _ interface{} = struct{*bytes.Buffer}{}`, nil, }, } for _, test := range tests { // Parse the file. fset := token.NewFileSet() f, err := parser.ParseFile(fset, "input.go", test.input, 0) if err != nil { t.Errorf("test %q: %s", test.input[:15], err) continue } // Create a single-file main package. // Load dependencies from gc binary export data. ssapkg, _, err := ssautil.BuildPackage(&types.Config{Importer: importer.Default()}, fset, types.NewPackage("p", ""), []*ast.File{f}, ssa.SanityCheckFunctions) if err != nil { t.Errorf("test %q: %s", test.input[:15], err) continue } var typstrs []string for _, T := range ssapkg.Prog.RuntimeTypes() { typstrs = append(typstrs, T.String()) } sort.Strings(typstrs) if !reflect.DeepEqual(typstrs, test.want) { t.Errorf("test 'package %s': got %q, want %q", f.Name.Name, typstrs, test.want) } } } // TestInit tests that synthesized init functions are correctly formed. // Bare init functions omit calls to dependent init functions and the use of // an init guard. They are useful in cases where the client uses a different // calling convention for init functions, or cases where it is easier for a // client to analyze bare init functions. Both of these aspects are used by // the llgo compiler for simpler integration with gccgo's runtime library, // and to simplify the analysis whereby it deduces which stores to globals // can be lowered to global initializers. func TestInit(t *testing.T) { tests := []struct { mode ssa.BuilderMode input, want string }{ {0, `package A; import _ "errors"; var i int = 42`, `# Name: A.init # Package: A # Synthetic: package initializer func init(): 0: entry P:0 S:2 t0 = *init$guard bool if t0 goto 2 else 1 1: init.start P:1 S:1 *init$guard = true:bool t1 = errors.init() () *i = 42:int jump 2 2: init.done P:2 S:0 return `}, {ssa.BareInits, `package B; import _ "errors"; var i int = 42`, `# Name: B.init # Package: B # Synthetic: package initializer func init(): 0: entry P:0 S:0 *i = 42:int return `}, } for _, test := range tests { // Create a single-file main package. var conf loader.Config f, err := conf.ParseFile("", test.input) if err != nil { t.Errorf("test %q: %s", test.input[:15], err) continue } conf.CreateFromFiles(f.Name.Name, f) lprog, err := conf.Load() if err != nil { t.Errorf("test 'package %s': Load: %s", f.Name.Name, err) continue } prog := ssautil.CreateProgram(lprog, test.mode) mainPkg := prog.Package(lprog.Created[0].Pkg) prog.Build() initFunc := mainPkg.Func("init") if initFunc == nil { t.Errorf("test 'package %s': no init function", f.Name.Name) continue } var initbuf bytes.Buffer _, err = initFunc.WriteTo(&initbuf) if err != nil { t.Errorf("test 'package %s': WriteTo: %s", f.Name.Name, err) continue } if initbuf.String() != test.want { t.Errorf("test 'package %s': got %s, want %s", f.Name.Name, initbuf.String(), test.want) } } } // TestSyntheticFuncs checks that the expected synthetic functions are // created, reachable, and not duplicated. func TestSyntheticFuncs(t *testing.T) { const input = `package P type T int func (T) f() int func (*T) g() int var ( // thunks a = T.f b = T.f c = (struct{T}).f d = (struct{T}).f e = (*T).g f = (*T).g g = (struct{*T}).g h = (struct{*T}).g // bounds i = T(0).f j = T(0).f k = new(T).g l = new(T).g // wrappers m interface{} = struct{T}{} n interface{} = struct{T}{} o interface{} = struct{*T}{} p interface{} = struct{*T}{} q interface{} = new(struct{T}) r interface{} = new(struct{T}) s interface{} = new(struct{*T}) t interface{} = new(struct{*T}) ) ` // Parse var conf loader.Config f, err := conf.ParseFile("", input) if err != nil { t.Fatalf("parse: %v", err) } conf.CreateFromFiles(f.Name.Name, f) // Load lprog, err := conf.Load() if err != nil { t.Fatalf("Load: %v", err) } // Create and build SSA prog := ssautil.CreateProgram(lprog, 0) prog.Build() // Enumerate reachable synthetic functions want := map[string]string{ "(*P.T).g$bound": "bound method wrapper for func (*P.T).g() int", "(P.T).f$bound": "bound method wrapper for func (P.T).f() int", "(*P.T).g$thunk": "thunk for func (*P.T).g() int", "(P.T).f$thunk": "thunk for func (P.T).f() int", "(struct{*P.T}).g$thunk": "thunk for func (*P.T).g() int", "(struct{P.T}).f$thunk": "thunk for func (P.T).f() int", "(*P.T).f": "wrapper for func (P.T).f() int", "(*struct{*P.T}).f": "wrapper for func (P.T).f() int", "(*struct{*P.T}).g": "wrapper for func (*P.T).g() int", "(*struct{P.T}).f": "wrapper for func (P.T).f() int", "(*struct{P.T}).g": "wrapper for func (*P.T).g() int", "(struct{*P.T}).f": "wrapper for func (P.T).f() int", "(struct{*P.T}).g": "wrapper for func (*P.T).g() int", "(struct{P.T}).f": "wrapper for func (P.T).f() int", "P.init": "package initializer", } for fn := range ssautil.AllFunctions(prog) { if fn.Synthetic == "" { continue } name := fn.String() wantDescr, ok := want[name] if !ok { t.Errorf("got unexpected/duplicate func: %q: %q", name, fn.Synthetic) continue } delete(want, name) if wantDescr != fn.Synthetic { t.Errorf("(%s).Synthetic = %q, want %q", name, fn.Synthetic, wantDescr) } } for fn, descr := range want { t.Errorf("want func: %q: %q", fn, descr) } } // TestPhiElimination ensures that dead phis, including those that // participate in a cycle, are properly eliminated. func TestPhiElimination(t *testing.T) { const input = ` package p func f() error func g(slice []int) { for { for range slice { // e should not be lifted to a dead φ-node. e := f() h(e) } } } func h(error) ` // The SSA code for this function should look something like this: // 0: // jump 1 // 1: // t0 = len(slice) // jump 2 // 2: // t1 = phi [1: -1:int, 3: t2] // t2 = t1 + 1:int // t3 = t2 < t0 // if t3 goto 3 else 1 // 3: // t4 = f() // t5 = h(t4) // jump 2 // // But earlier versions of the SSA construction algorithm would // additionally generate this cycle of dead phis: // // 1: // t7 = phi [0: nil:error, 2: t8] #e // ... // 2: // t8 = phi [1: t7, 3: t4] #e // ... // Parse var conf loader.Config f, err := conf.ParseFile("", input) if err != nil { t.Fatalf("parse: %v", err) } conf.CreateFromFiles("p", f) // Load lprog, err := conf.Load() if err != nil { t.Fatalf("Load: %v", err) } // Create and build SSA prog := ssautil.CreateProgram(lprog, 0) p := prog.Package(lprog.Package("p").Pkg) p.Build() g := p.Func("g") phis := 0 for _, b := range g.Blocks { for _, instr := range b.Instrs { if _, ok := instr.(*ssa.Phi); ok { phis++ } } } if phis != 1 { g.WriteTo(os.Stderr) t.Errorf("expected a single Phi (for the range index), got %d", phis) } }