// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package eg implements the example-based refactoring tool whose // command-line is defined in golang.org/x/tools/cmd/eg. package eg // import "golang.org/x/tools/refactor/eg" import ( "bytes" "fmt" "go/ast" "go/format" "go/printer" "go/token" "go/types" "os" ) const Help = ` This tool implements example-based refactoring of expressions. The transformation is specified as a Go file defining two functions, 'before' and 'after', of identical types. Each function body consists of a single statement: either a return statement with a single (possibly multi-valued) expression, or an expression statement. The 'before' expression specifies a pattern and the 'after' expression its replacement. package P import ( "errors"; "fmt" ) func before(s string) error { return fmt.Errorf("%s", s) } func after(s string) error { return errors.New(s) } The expression statement form is useful when the expression has no result, for example: func before(msg string) { log.Fatalf("%s", msg) } func after(msg string) { log.Fatal(msg) } The parameters of both functions are wildcards that may match any expression assignable to that type. If the pattern contains multiple occurrences of the same parameter, each must match the same expression in the input for the pattern to match. If the replacement contains multiple occurrences of the same parameter, the expression will be duplicated, possibly changing the side-effects. The tool analyses all Go code in the packages specified by the arguments, replacing all occurrences of the pattern with the substitution. So, the transform above would change this input: err := fmt.Errorf("%s", "error: " + msg) to this output: err := errors.New("error: " + msg) Identifiers, including qualified identifiers (p.X) are considered to match only if they denote the same object. This allows correct matching even in the presence of dot imports, named imports and locally shadowed package names in the input program. Matching of type syntax is semantic, not syntactic: type syntax in the pattern matches type syntax in the input if the types are identical. Thus, func(x int) matches func(y int). This tool was inspired by other example-based refactoring tools, 'gofmt -r' for Go and Refaster for Java. LIMITATIONS =========== EXPRESSIVENESS Only refactorings that replace one expression with another, regardless of the expression's context, may be expressed. Refactoring arbitrary statements (or sequences of statements) is a less well-defined problem and is less amenable to this approach. A pattern that contains a function literal (and hence statements) never matches. There is no way to generalize over related types, e.g. to express that a wildcard may have any integer type, for example. It is not possible to replace an expression by one of a different type, even in contexts where this is legal, such as x in fmt.Print(x). The struct literals T{x} and T{K: x} cannot both be matched by a single template. SAFETY Verifying that a transformation does not introduce type errors is very complex in the general case. An innocuous-looking replacement of one constant by another (e.g. 1 to 2) may cause type errors relating to array types and indices, for example. The tool performs only very superficial checks of type preservation. IMPORTS Although the matching algorithm is fully aware of scoping rules, the replacement algorithm is not, so the replacement code may contain incorrect identifier syntax for imported objects if there are dot imports, named imports or locally shadowed package names in the input program. Imports are added as needed, but they are not removed as needed. Run 'goimports' on the modified file for now. Dot imports are forbidden in the template. TIPS ==== Sometimes a little creativity is required to implement the desired migration. This section lists a few tips and tricks. To remove the final parameter from a function, temporarily change the function signature so that the final parameter is variadic, as this allows legal calls both with and without the argument. Then use eg to remove the final argument from all callers, and remove the variadic parameter by hand. The reverse process can be used to add a final parameter. To add or remove parameters other than the final one, you must do it in stages: (1) declare a variant function f' with a different name and the desired parameters; (2) use eg to transform calls to f into calls to f', changing the arguments as needed; (3) change the declaration of f to match f'; (4) use eg to rename f' to f in all calls; (5) delete f'. ` // TODO(adonovan): expand upon the above documentation as an HTML page. // A Transformer represents a single example-based transformation. type Transformer struct { fset *token.FileSet verbose bool info *types.Info // combined type info for template/input/output ASTs seenInfos map[*types.Info]bool wildcards map[*types.Var]bool // set of parameters in func before() env map[string]ast.Expr // maps parameter name to wildcard binding importedObjs map[types.Object]*ast.SelectorExpr // objects imported by after(). before, after ast.Expr afterStmts []ast.Stmt allowWildcards bool // Working state of Transform(): nsubsts int // number of substitutions made currentPkg *types.Package // package of current call } // NewTransformer returns a transformer based on the specified template, // a single-file package containing "before" and "after" functions as // described in the package documentation. // tmplInfo is the type information for tmplFile. // func NewTransformer(fset *token.FileSet, tmplPkg *types.Package, tmplFile *ast.File, tmplInfo *types.Info, verbose bool) (*Transformer, error) { // Check the template. beforeSig := funcSig(tmplPkg, "before") if beforeSig == nil { return nil, fmt.Errorf("no 'before' func found in template") } afterSig := funcSig(tmplPkg, "after") if afterSig == nil { return nil, fmt.Errorf("no 'after' func found in template") } // TODO(adonovan): should we also check the names of the params match? if !types.Identical(afterSig, beforeSig) { return nil, fmt.Errorf("before %s and after %s functions have different signatures", beforeSig, afterSig) } for _, imp := range tmplFile.Imports { if imp.Name != nil && imp.Name.Name == "." { // Dot imports are currently forbidden. We // make the simplifying assumption that all // imports are regular, without local renames. return nil, fmt.Errorf("dot-import (of %s) in template", imp.Path.Value) } } var beforeDecl, afterDecl *ast.FuncDecl for _, decl := range tmplFile.Decls { if decl, ok := decl.(*ast.FuncDecl); ok { switch decl.Name.Name { case "before": beforeDecl = decl case "after": afterDecl = decl } } } before, err := soleExpr(beforeDecl) if err != nil { return nil, fmt.Errorf("before: %s", err) } afterStmts, after, err := stmtAndExpr(afterDecl) if err != nil { return nil, fmt.Errorf("after: %s", err) } wildcards := make(map[*types.Var]bool) for i := 0; i < beforeSig.Params().Len(); i++ { wildcards[beforeSig.Params().At(i)] = true } // checkExprTypes returns an error if Tb (type of before()) is not // safe to replace with Ta (type of after()). // // Only superficial checks are performed, and they may result in both // false positives and negatives. // // Ideally, we would only require that the replacement be assignable // to the context of a specific pattern occurrence, but the type // checker doesn't record that information and it's complex to deduce. // A Go type cannot capture all the constraints of a given expression // context, which may include the size, constness, signedness, // namedness or constructor of its type, and even the specific value // of the replacement. (Consider the rule that array literal keys // must be unique.) So we cannot hope to prove the safety of a // transformation in general. Tb := tmplInfo.TypeOf(before) Ta := tmplInfo.TypeOf(after) if types.AssignableTo(Tb, Ta) { // safe: replacement is assignable to pattern. } else if tuple, ok := Tb.(*types.Tuple); ok && tuple.Len() == 0 { // safe: pattern has void type (must appear in an ExprStmt). } else { return nil, fmt.Errorf("%s is not a safe replacement for %s", Ta, Tb) } tr := &Transformer{ fset: fset, verbose: verbose, wildcards: wildcards, allowWildcards: true, seenInfos: make(map[*types.Info]bool), importedObjs: make(map[types.Object]*ast.SelectorExpr), before: before, after: after, afterStmts: afterStmts, } // Combine type info from the template and input packages, and // type info for the synthesized ASTs too. This saves us // having to book-keep where each ast.Node originated as we // construct the resulting hybrid AST. tr.info = &types.Info{ Types: make(map[ast.Expr]types.TypeAndValue), Defs: make(map[*ast.Ident]types.Object), Uses: make(map[*ast.Ident]types.Object), Selections: make(map[*ast.SelectorExpr]*types.Selection), } mergeTypeInfo(tr.info, tmplInfo) // Compute set of imported objects required by after(). // TODO(adonovan): reject dot-imports in pattern ast.Inspect(after, func(n ast.Node) bool { if n, ok := n.(*ast.SelectorExpr); ok { if _, ok := tr.info.Selections[n]; !ok { // qualified ident obj := tr.info.Uses[n.Sel] tr.importedObjs[obj] = n return false // prune } } return true // recur }) return tr, nil } // WriteAST is a convenience function that writes AST f to the specified file. func WriteAST(fset *token.FileSet, filename string, f *ast.File) (err error) { fh, err := os.Create(filename) if err != nil { return err } defer func() { if err2 := fh.Close(); err != nil { err = err2 // prefer earlier error } }() return format.Node(fh, fset, f) } // -- utilities -------------------------------------------------------- // funcSig returns the signature of the specified package-level function. func funcSig(pkg *types.Package, name string) *types.Signature { if f, ok := pkg.Scope().Lookup(name).(*types.Func); ok { return f.Type().(*types.Signature) } return nil } // soleExpr returns the sole expression in the before/after template function. func soleExpr(fn *ast.FuncDecl) (ast.Expr, error) { if fn.Body == nil { return nil, fmt.Errorf("no body") } if len(fn.Body.List) != 1 { return nil, fmt.Errorf("must contain a single statement") } switch stmt := fn.Body.List[0].(type) { case *ast.ReturnStmt: if len(stmt.Results) != 1 { return nil, fmt.Errorf("return statement must have a single operand") } return stmt.Results[0], nil case *ast.ExprStmt: return stmt.X, nil } return nil, fmt.Errorf("must contain a single return or expression statement") } // stmtAndExpr returns the expression in the last return statement as well as the preceding lines. func stmtAndExpr(fn *ast.FuncDecl) ([]ast.Stmt, ast.Expr, error) { if fn.Body == nil { return nil, nil, fmt.Errorf("no body") } n := len(fn.Body.List) if n == 0 { return nil, nil, fmt.Errorf("must contain at least one statement") } stmts, last := fn.Body.List[:n-1], fn.Body.List[n-1] switch last := last.(type) { case *ast.ReturnStmt: if len(last.Results) != 1 { return nil, nil, fmt.Errorf("return statement must have a single operand") } return stmts, last.Results[0], nil case *ast.ExprStmt: return stmts, last.X, nil } return nil, nil, fmt.Errorf("must end with a single return or expression statement") } // mergeTypeInfo adds type info from src to dst. func mergeTypeInfo(dst, src *types.Info) { for k, v := range src.Types { dst.Types[k] = v } for k, v := range src.Defs { dst.Defs[k] = v } for k, v := range src.Uses { dst.Uses[k] = v } for k, v := range src.Selections { dst.Selections[k] = v } } // (debugging only) func astString(fset *token.FileSet, n ast.Node) string { var buf bytes.Buffer printer.Fprint(&buf, fset, n) return buf.String() }