// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package cha computes the call graph of a Go program using the Class // Hierarchy Analysis (CHA) algorithm. // // CHA was first described in "Optimization of Object-Oriented Programs // Using Static Class Hierarchy Analysis", Jeffrey Dean, David Grove, // and Craig Chambers, ECOOP'95. // // CHA is related to RTA (see go/callgraph/rta); the difference is that // CHA conservatively computes the entire "implements" relation between // interfaces and concrete types ahead of time, whereas RTA uses dynamic // programming to construct it on the fly as it encounters new functions // reachable from main. CHA may thus include spurious call edges for // types that haven't been instantiated yet, or types that are never // instantiated. // // Since CHA conservatively assumes that all functions are address-taken // and all concrete types are put into interfaces, it is sound to run on // partial programs, such as libraries without a main or test function. // package cha // import "honnef.co/go/tools/callgraph/cha" import ( "go/types" "golang.org/x/tools/go/types/typeutil" "honnef.co/go/tools/callgraph" "honnef.co/go/tools/ir" "honnef.co/go/tools/ir/irutil" ) // CallGraph computes the call graph of the specified program using the // Class Hierarchy Analysis algorithm. // func CallGraph(prog *ir.Program) *callgraph.Graph { cg := callgraph.New(nil) // TODO(adonovan) eliminate concept of rooted callgraph allFuncs := irutil.AllFunctions(prog) // funcsBySig contains all functions, keyed by signature. It is // the effective set of address-taken functions used to resolve // a dynamic call of a particular signature. var funcsBySig typeutil.Map // value is []*ir.Function // methodsByName contains all methods, // grouped by name for efficient lookup. methodsByName := make(map[string][]*ir.Function) // methodsMemo records, for every abstract method call call I.f on // interface type I, the set of concrete methods C.f of all // types C that satisfy interface I. methodsMemo := make(map[*types.Func][]*ir.Function) lookupMethods := func(m *types.Func) []*ir.Function { methods, ok := methodsMemo[m] if !ok { I := m.Type().(*types.Signature).Recv().Type().Underlying().(*types.Interface) for _, f := range methodsByName[m.Name()] { C := f.Signature.Recv().Type() // named or *named if types.Implements(C, I) { methods = append(methods, f) } } methodsMemo[m] = methods } return methods } for f := range allFuncs { if f.Signature.Recv() == nil { // Package initializers can never be address-taken. if f.Name() == "init" && f.Synthetic == "package initializer" { continue } funcs, _ := funcsBySig.At(f.Signature).([]*ir.Function) funcs = append(funcs, f) funcsBySig.Set(f.Signature, funcs) } else { methodsByName[f.Name()] = append(methodsByName[f.Name()], f) } } addEdge := func(fnode *callgraph.Node, site ir.CallInstruction, g *ir.Function) { gnode := cg.CreateNode(g) callgraph.AddEdge(fnode, site, gnode) } addEdges := func(fnode *callgraph.Node, site ir.CallInstruction, callees []*ir.Function) { // Because every call to a highly polymorphic and // frequently used abstract method such as // (io.Writer).Write is assumed to call every concrete // Write method in the program, the call graph can // contain a lot of duplication. // // TODO(adonovan): opt: consider factoring the callgraph // API so that the Callers component of each edge is a // slice of nodes, not a singleton. for _, g := range callees { addEdge(fnode, site, g) } } for f := range allFuncs { fnode := cg.CreateNode(f) for _, b := range f.Blocks { for _, instr := range b.Instrs { if site, ok := instr.(ir.CallInstruction); ok { call := site.Common() if call.IsInvoke() { addEdges(fnode, site, lookupMethods(call.Method)) } else if g := call.StaticCallee(); g != nil { addEdge(fnode, site, g) } else if _, ok := call.Value.(*ir.Builtin); !ok { callees, _ := funcsBySig.At(call.Signature()).([]*ir.Function) addEdges(fnode, site, callees) } } } } } return cg }