// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ir // This file defines algorithms related to dominance. // Dominator tree construction ---------------------------------------- // // We use the algorithm described in Lengauer & Tarjan. 1979. A fast // algorithm for finding dominators in a flowgraph. // http://doi.acm.org/10.1145/357062.357071 // // We also apply the optimizations to SLT described in Georgiadis et // al, Finding Dominators in Practice, JGAA 2006, // http://jgaa.info/accepted/2006/GeorgiadisTarjanWerneck2006.10.1.pdf // to avoid the need for buckets of size > 1. import ( "bytes" "fmt" "io" "math/big" "os" "sort" ) // Idom returns the block that immediately dominates b: // its parent in the dominator tree, if any. // The entry node (b.Index==0) does not have a parent. // func (b *BasicBlock) Idom() *BasicBlock { return b.dom.idom } // Dominees returns the list of blocks that b immediately dominates: // its children in the dominator tree. // func (b *BasicBlock) Dominees() []*BasicBlock { return b.dom.children } // Dominates reports whether b dominates c. func (b *BasicBlock) Dominates(c *BasicBlock) bool { return b.dom.pre <= c.dom.pre && c.dom.post <= b.dom.post } type byDomPreorder []*BasicBlock func (a byDomPreorder) Len() int { return len(a) } func (a byDomPreorder) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func (a byDomPreorder) Less(i, j int) bool { return a[i].dom.pre < a[j].dom.pre } // DomPreorder returns a new slice containing the blocks of f in // dominator tree preorder. // func (f *Function) DomPreorder() []*BasicBlock { n := len(f.Blocks) order := make(byDomPreorder, n) copy(order, f.Blocks) sort.Sort(order) return order } // domInfo contains a BasicBlock's dominance information. type domInfo struct { idom *BasicBlock // immediate dominator (parent in domtree) children []*BasicBlock // nodes immediately dominated by this one pre, post int32 // pre- and post-order numbering within domtree } // buildDomTree computes the dominator tree of f using the LT algorithm. // Precondition: all blocks are reachable (e.g. optimizeBlocks has been run). // func buildDomTree(fn *Function) { // The step numbers refer to the original LT paper; the // reordering is due to Georgiadis. // Clear any previous domInfo. for _, b := range fn.Blocks { b.dom = domInfo{} } idoms := make([]*BasicBlock, len(fn.Blocks)) order := make([]*BasicBlock, 0, len(fn.Blocks)) seen := fn.blockset(0) var dfs func(b *BasicBlock) dfs = func(b *BasicBlock) { if !seen.Add(b) { return } for _, succ := range b.Succs { dfs(succ) } if fn.fakeExits.Has(b) { dfs(fn.Exit) } order = append(order, b) b.post = len(order) - 1 } dfs(fn.Blocks[0]) for i := 0; i < len(order)/2; i++ { o := len(order) - i - 1 order[i], order[o] = order[o], order[i] } idoms[fn.Blocks[0].Index] = fn.Blocks[0] changed := true for changed { changed = false // iterate over all nodes in reverse postorder, except for the // entry node for _, b := range order[1:] { var newIdom *BasicBlock do := func(p *BasicBlock) { if idoms[p.Index] == nil { return } if newIdom == nil { newIdom = p } else { finger1 := p finger2 := newIdom for finger1 != finger2 { for finger1.post < finger2.post { finger1 = idoms[finger1.Index] } for finger2.post < finger1.post { finger2 = idoms[finger2.Index] } } newIdom = finger1 } } for _, p := range b.Preds { do(p) } if b == fn.Exit { for _, p := range fn.Blocks { if fn.fakeExits.Has(p) { do(p) } } } if idoms[b.Index] != newIdom { idoms[b.Index] = newIdom changed = true } } } for i, b := range idoms { fn.Blocks[i].dom.idom = b if b == nil { // malformed CFG continue } if i == b.Index { continue } b.dom.children = append(b.dom.children, fn.Blocks[i]) } numberDomTree(fn.Blocks[0], 0, 0) // printDomTreeDot(os.Stderr, fn) // debugging // printDomTreeText(os.Stderr, root, 0) // debugging if fn.Prog.mode&SanityCheckFunctions != 0 { sanityCheckDomTree(fn) } } // buildPostDomTree is like buildDomTree, but builds the post-dominator tree instead. func buildPostDomTree(fn *Function) { // The step numbers refer to the original LT paper; the // reordering is due to Georgiadis. // Clear any previous domInfo. for _, b := range fn.Blocks { b.pdom = domInfo{} } idoms := make([]*BasicBlock, len(fn.Blocks)) order := make([]*BasicBlock, 0, len(fn.Blocks)) seen := fn.blockset(0) var dfs func(b *BasicBlock) dfs = func(b *BasicBlock) { if !seen.Add(b) { return } for _, pred := range b.Preds { dfs(pred) } if b == fn.Exit { for _, p := range fn.Blocks { if fn.fakeExits.Has(p) { dfs(p) } } } order = append(order, b) b.post = len(order) - 1 } dfs(fn.Exit) for i := 0; i < len(order)/2; i++ { o := len(order) - i - 1 order[i], order[o] = order[o], order[i] } idoms[fn.Exit.Index] = fn.Exit changed := true for changed { changed = false // iterate over all nodes in reverse postorder, except for the // exit node for _, b := range order[1:] { var newIdom *BasicBlock do := func(p *BasicBlock) { if idoms[p.Index] == nil { return } if newIdom == nil { newIdom = p } else { finger1 := p finger2 := newIdom for finger1 != finger2 { for finger1.post < finger2.post { finger1 = idoms[finger1.Index] } for finger2.post < finger1.post { finger2 = idoms[finger2.Index] } } newIdom = finger1 } } for _, p := range b.Succs { do(p) } if fn.fakeExits.Has(b) { do(fn.Exit) } if idoms[b.Index] != newIdom { idoms[b.Index] = newIdom changed = true } } } for i, b := range idoms { fn.Blocks[i].pdom.idom = b if b == nil { // malformed CFG continue } if i == b.Index { continue } b.pdom.children = append(b.pdom.children, fn.Blocks[i]) } numberPostDomTree(fn.Exit, 0, 0) // printPostDomTreeDot(os.Stderr, fn) // debugging // printPostDomTreeText(os.Stderr, fn.Exit, 0) // debugging if fn.Prog.mode&SanityCheckFunctions != 0 { // XXX sanityCheckDomTree(fn) // XXX } } // numberDomTree sets the pre- and post-order numbers of a depth-first // traversal of the dominator tree rooted at v. These are used to // answer dominance queries in constant time. // func numberDomTree(v *BasicBlock, pre, post int32) (int32, int32) { v.dom.pre = pre pre++ for _, child := range v.dom.children { pre, post = numberDomTree(child, pre, post) } v.dom.post = post post++ return pre, post } // numberPostDomTree sets the pre- and post-order numbers of a depth-first // traversal of the post-dominator tree rooted at v. These are used to // answer post-dominance queries in constant time. // func numberPostDomTree(v *BasicBlock, pre, post int32) (int32, int32) { v.pdom.pre = pre pre++ for _, child := range v.pdom.children { pre, post = numberPostDomTree(child, pre, post) } v.pdom.post = post post++ return pre, post } // Testing utilities ---------------------------------------- // sanityCheckDomTree checks the correctness of the dominator tree // computed by the LT algorithm by comparing against the dominance // relation computed by a naive Kildall-style forward dataflow // analysis (Algorithm 10.16 from the "Dragon" book). // func sanityCheckDomTree(f *Function) { n := len(f.Blocks) // D[i] is the set of blocks that dominate f.Blocks[i], // represented as a bit-set of block indices. D := make([]big.Int, n) one := big.NewInt(1) // all is the set of all blocks; constant. var all big.Int all.Set(one).Lsh(&all, uint(n)).Sub(&all, one) // Initialization. for i := range f.Blocks { if i == 0 { // A root is dominated only by itself. D[i].SetBit(&D[0], 0, 1) } else { // All other blocks are (initially) dominated // by every block. D[i].Set(&all) } } // Iteration until fixed point. for changed := true; changed; { changed = false for i, b := range f.Blocks { if i == 0 { continue } // Compute intersection across predecessors. var x big.Int x.Set(&all) for _, pred := range b.Preds { x.And(&x, &D[pred.Index]) } if b == f.Exit { for _, p := range f.Blocks { if f.fakeExits.Has(p) { x.And(&x, &D[p.Index]) } } } x.SetBit(&x, i, 1) // a block always dominates itself. if D[i].Cmp(&x) != 0 { D[i].Set(&x) changed = true } } } // Check the entire relation. O(n^2). ok := true for i := 0; i < n; i++ { for j := 0; j < n; j++ { b, c := f.Blocks[i], f.Blocks[j] actual := b.Dominates(c) expected := D[j].Bit(i) == 1 if actual != expected { fmt.Fprintf(os.Stderr, "dominates(%s, %s)==%t, want %t\n", b, c, actual, expected) ok = false } } } preorder := f.DomPreorder() for _, b := range f.Blocks { if got := preorder[b.dom.pre]; got != b { fmt.Fprintf(os.Stderr, "preorder[%d]==%s, want %s\n", b.dom.pre, got, b) ok = false } } if !ok { panic("sanityCheckDomTree failed for " + f.String()) } } // Printing functions ---------------------------------------- // printDomTree prints the dominator tree as text, using indentation. //lint:ignore U1000 used during debugging func printDomTreeText(buf *bytes.Buffer, v *BasicBlock, indent int) { fmt.Fprintf(buf, "%*s%s\n", 4*indent, "", v) for _, child := range v.dom.children { printDomTreeText(buf, child, indent+1) } } // printDomTreeDot prints the dominator tree of f in AT&T GraphViz // (.dot) format. //lint:ignore U1000 used during debugging func printDomTreeDot(buf io.Writer, f *Function) { fmt.Fprintln(buf, "//", f) fmt.Fprintln(buf, "digraph domtree {") for i, b := range f.Blocks { v := b.dom fmt.Fprintf(buf, "\tn%d [label=\"%s (%d, %d)\",shape=\"rectangle\"];\n", v.pre, b, v.pre, v.post) // TODO(adonovan): improve appearance of edges // belonging to both dominator tree and CFG. // Dominator tree edge. if i != 0 { fmt.Fprintf(buf, "\tn%d -> n%d [style=\"solid\",weight=100];\n", v.idom.dom.pre, v.pre) } // CFG edges. for _, pred := range b.Preds { fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0];\n", pred.dom.pre, v.pre) } } fmt.Fprintln(buf, "}") } // printDomTree prints the dominator tree as text, using indentation. //lint:ignore U1000 used during debugging func printPostDomTreeText(buf io.Writer, v *BasicBlock, indent int) { fmt.Fprintf(buf, "%*s%s\n", 4*indent, "", v) for _, child := range v.pdom.children { printPostDomTreeText(buf, child, indent+1) } } // printDomTreeDot prints the dominator tree of f in AT&T GraphViz // (.dot) format. //lint:ignore U1000 used during debugging func printPostDomTreeDot(buf io.Writer, f *Function) { fmt.Fprintln(buf, "//", f) fmt.Fprintln(buf, "digraph pdomtree {") for _, b := range f.Blocks { v := b.pdom fmt.Fprintf(buf, "\tn%d [label=\"%s (%d, %d)\",shape=\"rectangle\"];\n", v.pre, b, v.pre, v.post) // TODO(adonovan): improve appearance of edges // belonging to both dominator tree and CFG. // Dominator tree edge. if b != f.Exit { fmt.Fprintf(buf, "\tn%d -> n%d [style=\"solid\",weight=100];\n", v.idom.pdom.pre, v.pre) } // CFG edges. for _, pred := range b.Preds { fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0];\n", pred.pdom.pre, v.pre) } } fmt.Fprintln(buf, "}") }