// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ir // This file implements the String() methods for all Value and // Instruction types. import ( "bytes" "fmt" "go/types" "io" "reflect" "sort" "golang.org/x/tools/go/types/typeutil" ) // relName returns the name of v relative to i. // In most cases, this is identical to v.Name(), but references to // Functions (including methods) and Globals use RelString and // all types are displayed with relType, so that only cross-package // references are package-qualified. // func relName(v Value, i Instruction) string { if v == nil { return "" } var from *types.Package if i != nil { from = i.Parent().pkg() } switch v := v.(type) { case Member: // *Function or *Global return v.RelString(from) } return v.Name() } func relType(t types.Type, from *types.Package) string { return types.TypeString(t, types.RelativeTo(from)) } func relString(m Member, from *types.Package) string { // NB: not all globals have an Object (e.g. init$guard), // so use Package().Object not Object.Package(). if pkg := m.Package().Pkg; pkg != nil && pkg != from { return fmt.Sprintf("%s.%s", pkg.Path(), m.Name()) } return m.Name() } // Value.String() // // This method is provided only for debugging. // It never appears in disassembly, which uses Value.Name(). func (v *Parameter) String() string { from := v.Parent().pkg() return fmt.Sprintf("Parameter <%s> {%s}", relType(v.Type(), from), v.name) } func (v *FreeVar) String() string { from := v.Parent().pkg() return fmt.Sprintf("FreeVar <%s> %s", relType(v.Type(), from), v.Name()) } func (v *Builtin) String() string { return fmt.Sprintf("Builtin %s", v.Name()) } // Instruction.String() func (v *Alloc) String() string { from := v.Parent().pkg() storage := "Stack" if v.Heap { storage = "Heap" } return fmt.Sprintf("%sAlloc <%s>", storage, relType(v.Type(), from)) } func (v *Sigma) String() string { from := v.Parent().pkg() s := fmt.Sprintf("Sigma <%s> [b%d] %s", relType(v.Type(), from), v.From.Index, v.X.Name()) return s } func (v *Phi) String() string { var b bytes.Buffer fmt.Fprintf(&b, "Phi <%s>", v.Type()) for i, edge := range v.Edges { b.WriteString(" ") // Be robust against malformed CFG. if v.block == nil { b.WriteString("??") continue } block := -1 if i < len(v.block.Preds) { block = v.block.Preds[i].Index } fmt.Fprintf(&b, "%d:", block) edgeVal := "" // be robust if edge != nil { edgeVal = relName(edge, v) } b.WriteString(edgeVal) } return b.String() } func printCall(v *CallCommon, prefix string, instr Instruction) string { var b bytes.Buffer if !v.IsInvoke() { if value, ok := instr.(Value); ok { fmt.Fprintf(&b, "%s <%s> %s", prefix, relType(value.Type(), instr.Parent().pkg()), relName(v.Value, instr)) } else { fmt.Fprintf(&b, "%s %s", prefix, relName(v.Value, instr)) } } else { if value, ok := instr.(Value); ok { fmt.Fprintf(&b, "%sInvoke <%s> %s.%s", prefix, relType(value.Type(), instr.Parent().pkg()), relName(v.Value, instr), v.Method.Name()) } else { fmt.Fprintf(&b, "%sInvoke %s.%s", prefix, relName(v.Value, instr), v.Method.Name()) } } for _, arg := range v.Args { b.WriteString(" ") b.WriteString(relName(arg, instr)) } return b.String() } func (c *CallCommon) String() string { return printCall(c, "", nil) } func (v *Call) String() string { return printCall(&v.Call, "Call", v) } func (v *BinOp) String() string { return fmt.Sprintf("BinOp <%s> {%s} %s %s", relType(v.Type(), v.Parent().pkg()), v.Op.String(), relName(v.X, v), relName(v.Y, v)) } func (v *UnOp) String() string { return fmt.Sprintf("UnOp <%s> {%s} %s", relType(v.Type(), v.Parent().pkg()), v.Op.String(), relName(v.X, v)) } func (v *Load) String() string { return fmt.Sprintf("Load <%s> %s", relType(v.Type(), v.Parent().pkg()), relName(v.X, v)) } func printConv(prefix string, v, x Value) string { from := v.Parent().pkg() return fmt.Sprintf("%s <%s> %s", prefix, relType(v.Type(), from), relName(x, v.(Instruction))) } func (v *ChangeType) String() string { return printConv("ChangeType", v, v.X) } func (v *Convert) String() string { return printConv("Convert", v, v.X) } func (v *ChangeInterface) String() string { return printConv("ChangeInterface", v, v.X) } func (v *MakeInterface) String() string { return printConv("MakeInterface", v, v.X) } func (v *MakeClosure) String() string { from := v.Parent().pkg() var b bytes.Buffer fmt.Fprintf(&b, "MakeClosure <%s> %s", relType(v.Type(), from), relName(v.Fn, v)) if v.Bindings != nil { for _, c := range v.Bindings { b.WriteString(" ") b.WriteString(relName(c, v)) } } return b.String() } func (v *MakeSlice) String() string { from := v.Parent().pkg() return fmt.Sprintf("MakeSlice <%s> %s %s", relType(v.Type(), from), relName(v.Len, v), relName(v.Cap, v)) } func (v *Slice) String() string { from := v.Parent().pkg() return fmt.Sprintf("Slice <%s> %s %s %s %s", relType(v.Type(), from), relName(v.X, v), relName(v.Low, v), relName(v.High, v), relName(v.Max, v)) } func (v *MakeMap) String() string { res := "" if v.Reserve != nil { res = relName(v.Reserve, v) } from := v.Parent().pkg() return fmt.Sprintf("MakeMap <%s> %s", relType(v.Type(), from), res) } func (v *MakeChan) String() string { from := v.Parent().pkg() return fmt.Sprintf("MakeChan <%s> %s", relType(v.Type(), from), relName(v.Size, v)) } func (v *FieldAddr) String() string { from := v.Parent().pkg() st := deref(v.X.Type()).Underlying().(*types.Struct) // Be robust against a bad index. name := "?" if 0 <= v.Field && v.Field < st.NumFields() { name = st.Field(v.Field).Name() } return fmt.Sprintf("FieldAddr <%s> [%d] (%s) %s", relType(v.Type(), from), v.Field, name, relName(v.X, v)) } func (v *Field) String() string { st := v.X.Type().Underlying().(*types.Struct) // Be robust against a bad index. name := "?" if 0 <= v.Field && v.Field < st.NumFields() { name = st.Field(v.Field).Name() } from := v.Parent().pkg() return fmt.Sprintf("Field <%s> [%d] (%s) %s", relType(v.Type(), from), v.Field, name, relName(v.X, v)) } func (v *IndexAddr) String() string { from := v.Parent().pkg() return fmt.Sprintf("IndexAddr <%s> %s %s", relType(v.Type(), from), relName(v.X, v), relName(v.Index, v)) } func (v *Index) String() string { from := v.Parent().pkg() return fmt.Sprintf("Index <%s> %s %s", relType(v.Type(), from), relName(v.X, v), relName(v.Index, v)) } func (v *MapLookup) String() string { from := v.Parent().pkg() return fmt.Sprintf("MapLookup <%s> %s %s", relType(v.Type(), from), relName(v.X, v), relName(v.Index, v)) } func (v *StringLookup) String() string { from := v.Parent().pkg() return fmt.Sprintf("StringLookup <%s> %s %s", relType(v.Type(), from), relName(v.X, v), relName(v.Index, v)) } func (v *Range) String() string { from := v.Parent().pkg() return fmt.Sprintf("Range <%s> %s", relType(v.Type(), from), relName(v.X, v)) } func (v *Next) String() string { from := v.Parent().pkg() return fmt.Sprintf("Next <%s> %s", relType(v.Type(), from), relName(v.Iter, v)) } func (v *TypeAssert) String() string { from := v.Parent().pkg() return fmt.Sprintf("TypeAssert <%s> %s", relType(v.Type(), from), relName(v.X, v)) } func (v *Extract) String() string { from := v.Parent().pkg() name := v.Tuple.Type().(*types.Tuple).At(v.Index).Name() return fmt.Sprintf("Extract <%s> [%d] (%s) %s", relType(v.Type(), from), v.Index, name, relName(v.Tuple, v)) } func (s *Jump) String() string { // Be robust against malformed CFG. block := -1 if s.block != nil && len(s.block.Succs) == 1 { block = s.block.Succs[0].Index } str := fmt.Sprintf("Jump → b%d", block) if s.Comment != "" { str = fmt.Sprintf("%s # %s", str, s.Comment) } return str } func (s *Unreachable) String() string { // Be robust against malformed CFG. block := -1 if s.block != nil && len(s.block.Succs) == 1 { block = s.block.Succs[0].Index } return fmt.Sprintf("Unreachable → b%d", block) } func (s *If) String() string { // Be robust against malformed CFG. tblock, fblock := -1, -1 if s.block != nil && len(s.block.Succs) == 2 { tblock = s.block.Succs[0].Index fblock = s.block.Succs[1].Index } return fmt.Sprintf("If %s → b%d b%d", relName(s.Cond, s), tblock, fblock) } func (s *ConstantSwitch) String() string { var b bytes.Buffer fmt.Fprintf(&b, "ConstantSwitch %s", relName(s.Tag, s)) for _, cond := range s.Conds { fmt.Fprintf(&b, " %s", relName(cond, s)) } fmt.Fprint(&b, " →") for _, succ := range s.block.Succs { fmt.Fprintf(&b, " b%d", succ.Index) } return b.String() } func (s *TypeSwitch) String() string { from := s.Parent().pkg() var b bytes.Buffer fmt.Fprintf(&b, "TypeSwitch <%s> %s", relType(s.typ, from), relName(s.Tag, s)) for _, cond := range s.Conds { fmt.Fprintf(&b, " %q", relType(cond, s.block.parent.pkg())) } return b.String() } func (s *Go) String() string { return printCall(&s.Call, "Go", s) } func (s *Panic) String() string { // Be robust against malformed CFG. block := -1 if s.block != nil && len(s.block.Succs) == 1 { block = s.block.Succs[0].Index } return fmt.Sprintf("Panic %s → b%d", relName(s.X, s), block) } func (s *Return) String() string { var b bytes.Buffer b.WriteString("Return") for _, r := range s.Results { b.WriteString(" ") b.WriteString(relName(r, s)) } return b.String() } func (*RunDefers) String() string { return "RunDefers" } func (s *Send) String() string { return fmt.Sprintf("Send %s %s", relName(s.Chan, s), relName(s.X, s)) } func (recv *Recv) String() string { from := recv.Parent().pkg() return fmt.Sprintf("Recv <%s> %s", relType(recv.Type(), from), relName(recv.Chan, recv)) } func (s *Defer) String() string { return printCall(&s.Call, "Defer", s) } func (s *Select) String() string { var b bytes.Buffer for i, st := range s.States { if i > 0 { b.WriteString(", ") } if st.Dir == types.RecvOnly { b.WriteString("<-") b.WriteString(relName(st.Chan, s)) } else { b.WriteString(relName(st.Chan, s)) b.WriteString("<-") b.WriteString(relName(st.Send, s)) } } non := "" if !s.Blocking { non = "Non" } from := s.Parent().pkg() return fmt.Sprintf("Select%sBlocking <%s> [%s]", non, relType(s.Type(), from), b.String()) } func (s *Store) String() string { return fmt.Sprintf("Store {%s} %s %s", s.Val.Type(), relName(s.Addr, s), relName(s.Val, s)) } func (s *BlankStore) String() string { return fmt.Sprintf("BlankStore %s", relName(s.Val, s)) } func (s *MapUpdate) String() string { return fmt.Sprintf("MapUpdate %s %s %s", relName(s.Map, s), relName(s.Key, s), relName(s.Value, s)) } func (s *DebugRef) String() string { p := s.Parent().Prog.Fset.Position(s.Pos()) var descr interface{} if s.object != nil { descr = s.object // e.g. "var x int" } else { descr = reflect.TypeOf(s.Expr) // e.g. "*ast.CallExpr" } var addr string if s.IsAddr { addr = "address of " } return fmt.Sprintf("; %s%s @ %d:%d is %s", addr, descr, p.Line, p.Column, s.X.Name()) } func (p *Package) String() string { return "package " + p.Pkg.Path() } var _ io.WriterTo = (*Package)(nil) // *Package implements io.Writer func (p *Package) WriteTo(w io.Writer) (int64, error) { var buf bytes.Buffer WritePackage(&buf, p) n, err := w.Write(buf.Bytes()) return int64(n), err } // WritePackage writes to buf a human-readable summary of p. func WritePackage(buf *bytes.Buffer, p *Package) { fmt.Fprintf(buf, "%s:\n", p) var names []string maxname := 0 for name := range p.Members { if l := len(name); l > maxname { maxname = l } names = append(names, name) } from := p.Pkg sort.Strings(names) for _, name := range names { switch mem := p.Members[name].(type) { case *NamedConst: fmt.Fprintf(buf, " const %-*s %s = %s\n", maxname, name, mem.Name(), mem.Value.RelString(from)) case *Function: fmt.Fprintf(buf, " func %-*s %s\n", maxname, name, relType(mem.Type(), from)) case *Type: fmt.Fprintf(buf, " type %-*s %s\n", maxname, name, relType(mem.Type().Underlying(), from)) for _, meth := range typeutil.IntuitiveMethodSet(mem.Type(), &p.Prog.MethodSets) { fmt.Fprintf(buf, " %s\n", types.SelectionString(meth, types.RelativeTo(from))) } case *Global: fmt.Fprintf(buf, " var %-*s %s\n", maxname, name, relType(mem.Type().(*types.Pointer).Elem(), from)) } } fmt.Fprintf(buf, "\n") }