// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ir // This package defines a high-level intermediate representation for // Go programs using static single-information (SSI) form. import ( "fmt" "go/ast" "go/constant" "go/token" "go/types" "sync" "golang.org/x/tools/go/types/typeutil" ) type ID int // A Program is a partial or complete Go program converted to IR form. type Program struct { Fset *token.FileSet // position information for the files of this Program PrintFunc string // create ir.html for function specified in PrintFunc imported map[string]*Package // all importable Packages, keyed by import path packages map[*types.Package]*Package // all loaded Packages, keyed by object mode BuilderMode // set of mode bits for IR construction MethodSets typeutil.MethodSetCache // cache of type-checker's method-sets methodsMu sync.Mutex // guards the following maps: methodSets typeutil.Map // maps type to its concrete methodSet runtimeTypes typeutil.Map // types for which rtypes are needed canon typeutil.Map // type canonicalization map bounds map[*types.Func]*Function // bounds for curried x.Method closures thunks map[selectionKey]*Function // thunks for T.Method expressions } // A Package is a single analyzed Go package containing Members for // all package-level functions, variables, constants and types it // declares. These may be accessed directly via Members, or via the // type-specific accessor methods Func, Type, Var and Const. // // Members also contains entries for "init" (the synthetic package // initializer) and "init#%d", the nth declared init function, // and unspecified other things too. // type Package struct { Prog *Program // the owning program Pkg *types.Package // the corresponding go/types.Package Members map[string]Member // all package members keyed by name (incl. init and init#%d) Functions []*Function // all functions, excluding anonymous ones values map[types.Object]Value // package members (incl. types and methods), keyed by object init *Function // Func("init"); the package's init function debug bool // include full debug info in this package printFunc string // which function to print in HTML form // The following fields are set transiently, then cleared // after building. buildOnce sync.Once // ensures package building occurs once ninit int32 // number of init functions info *types.Info // package type information files []*ast.File // package ASTs } // A Member is a member of a Go package, implemented by *NamedConst, // *Global, *Function, or *Type; they are created by package-level // const, var, func and type declarations respectively. // type Member interface { Name() string // declared name of the package member String() string // package-qualified name of the package member RelString(*types.Package) string // like String, but relative refs are unqualified Object() types.Object // typechecker's object for this member, if any Type() types.Type // type of the package member Token() token.Token // token.{VAR,FUNC,CONST,TYPE} Package() *Package // the containing package } // A Type is a Member of a Package representing a package-level named type. type Type struct { object *types.TypeName pkg *Package } // A NamedConst is a Member of a Package representing a package-level // named constant. // // Pos() returns the position of the declaring ast.ValueSpec.Names[*] // identifier. // // NB: a NamedConst is not a Value; it contains a constant Value, which // it augments with the name and position of its 'const' declaration. // type NamedConst struct { object *types.Const Value *Const pkg *Package } // A Value is an IR value that can be referenced by an instruction. type Value interface { setID(ID) // Name returns the name of this value, and determines how // this Value appears when used as an operand of an // Instruction. // // This is the same as the source name for Parameters, // Builtins, Functions, FreeVars, Globals. // For constants, it is a representation of the constant's value // and type. For all other Values this is the name of the // virtual register defined by the instruction. // // The name of an IR Value is not semantically significant, // and may not even be unique within a function. Name() string // ID returns the ID of this value. IDs are unique within a single // function and are densely numbered, but may contain gaps. // Values and other Instructions share the same ID space. // Globally, values are identified by their addresses. However, // IDs exist to facilitate efficient storage of mappings between // values and data when analysing functions. // // NB: IDs are allocated late in the IR construction process and // are not available to early stages of said process. ID() ID // If this value is an Instruction, String returns its // disassembled form; otherwise it returns unspecified // human-readable information about the Value, such as its // kind, name and type. String() string // Type returns the type of this value. Many instructions // (e.g. IndexAddr) change their behaviour depending on the // types of their operands. Type() types.Type // Parent returns the function to which this Value belongs. // It returns nil for named Functions, Builtin and Global. Parent() *Function // Referrers returns the list of instructions that have this // value as one of their operands; it may contain duplicates // if an instruction has a repeated operand. // // Referrers actually returns a pointer through which the // caller may perform mutations to the object's state. // // Referrers is currently only defined if Parent()!=nil, // i.e. for the function-local values FreeVar, Parameter, // Functions (iff anonymous) and all value-defining instructions. // It returns nil for named Functions, Builtin and Global. // // Instruction.Operands contains the inverse of this relation. Referrers() *[]Instruction Operands(rands []*Value) []*Value // nil for non-Instructions // Source returns the AST node responsible for creating this // value. A single AST node may be responsible for more than one // value, and not all values have an associated AST node. // // Do not use this method to find a Value given an ast.Expr; use // ValueForExpr instead. Source() ast.Node // Pos returns Source().Pos() if Source is not nil, else it // returns token.NoPos. Pos() token.Pos } // An Instruction is an IR instruction that computes a new Value or // has some effect. // // An Instruction that defines a value (e.g. BinOp) also implements // the Value interface; an Instruction that only has an effect (e.g. Store) // does not. // type Instruction interface { setSource(ast.Node) setID(ID) // String returns the disassembled form of this value. // // Examples of Instructions that are Values: // "BinOp {+} t1 t2" (BinOp) // "Call len t1" (Call) // Note that the name of the Value is not printed. // // Examples of Instructions that are not Values: // "Return t1" (Return) // "Store {int} t2 t1" (Store) // // (The separation of Value.Name() from Value.String() is useful // for some analyses which distinguish the operation from the // value it defines, e.g., 'y = local int' is both an allocation // of memory 'local int' and a definition of a pointer y.) String() string // ID returns the ID of this instruction. IDs are unique within a single // function and are densely numbered, but may contain gaps. // Globally, instructions are identified by their addresses. However, // IDs exist to facilitate efficient storage of mappings between // instructions and data when analysing functions. // // NB: IDs are allocated late in the IR construction process and // are not available to early stages of said process. ID() ID // Parent returns the function to which this instruction // belongs. Parent() *Function // Block returns the basic block to which this instruction // belongs. Block() *BasicBlock // setBlock sets the basic block to which this instruction belongs. setBlock(*BasicBlock) // Operands returns the operands of this instruction: the // set of Values it references. // // Specifically, it appends their addresses to rands, a // user-provided slice, and returns the resulting slice, // permitting avoidance of memory allocation. // // The operands are appended in undefined order, but the order // is consistent for a given Instruction; the addresses are // always non-nil but may point to a nil Value. Clients may // store through the pointers, e.g. to effect a value // renaming. // // Value.Referrers is a subset of the inverse of this // relation. (Referrers are not tracked for all types of // Values.) Operands(rands []*Value) []*Value Referrers() *[]Instruction // nil for non-Values // Source returns the AST node responsible for creating this // instruction. A single AST node may be responsible for more than // one instruction, and not all instructions have an associated // AST node. Source() ast.Node // Pos returns Source().Pos() if Source is not nil, else it // returns token.NoPos. Pos() token.Pos } // A Node is a node in the IR value graph. Every concrete type that // implements Node is also either a Value, an Instruction, or both. // // Node contains the methods common to Value and Instruction, plus the // Operands and Referrers methods generalized to return nil for // non-Instructions and non-Values, respectively. // // Node is provided to simplify IR graph algorithms. Clients should // use the more specific and informative Value or Instruction // interfaces where appropriate. // type Node interface { setID(ID) // Common methods: ID() ID String() string Source() ast.Node Pos() token.Pos Parent() *Function // Partial methods: Operands(rands []*Value) []*Value // nil for non-Instructions Referrers() *[]Instruction // nil for non-Values } // Function represents the parameters, results, and code of a function // or method. // // If Blocks is nil, this indicates an external function for which no // Go source code is available. In this case, FreeVars and Locals // are nil too. Clients performing whole-program analysis must // handle external functions specially. // // Blocks contains the function's control-flow graph (CFG). // Blocks[0] is the function entry point; block order is not otherwise // semantically significant, though it may affect the readability of // the disassembly. // To iterate over the blocks in dominance order, use DomPreorder(). // // A nested function (Parent()!=nil) that refers to one or more // lexically enclosing local variables ("free variables") has FreeVars. // Such functions cannot be called directly but require a // value created by MakeClosure which, via its Bindings, supplies // values for these parameters. // // If the function is a method (Signature.Recv() != nil) then the first // element of Params is the receiver parameter. // // A Go package may declare many functions called "init". // For each one, Object().Name() returns "init" but Name() returns // "init#1", etc, in declaration order. // // Pos() returns the declaring ast.FuncLit.Type.Func or the position // of the ast.FuncDecl.Name, if the function was explicit in the // source. Synthetic wrappers, for which Synthetic != "", may share // the same position as the function they wrap. // Syntax.Pos() always returns the position of the declaring "func" token. // // Type() returns the function's Signature. // type Function struct { node name string object types.Object // a declared *types.Func or one of its wrappers method *types.Selection // info about provenance of synthetic methods Signature *types.Signature Synthetic string // provenance of synthetic function; "" for true source functions parent *Function // enclosing function if anon; nil if global Pkg *Package // enclosing package; nil for shared funcs (wrappers and error.Error) Prog *Program // enclosing program Params []*Parameter // function parameters; for methods, includes receiver FreeVars []*FreeVar // free variables whose values must be supplied by closure Locals []*Alloc // local variables of this function Blocks []*BasicBlock // basic blocks of the function; nil => external Exit *BasicBlock // The function's exit block AnonFuncs []*Function // anonymous functions directly beneath this one referrers []Instruction // referring instructions (iff Parent() != nil) WillExit bool // Calling this function will always terminate the process WillUnwind bool // Calling this function will always unwind (it will call runtime.Goexit or panic) *functionBody } type functionBody struct { // The following fields are set transiently during building, // then cleared. currentBlock *BasicBlock // where to emit code objects map[types.Object]Value // addresses of local variables namedResults []*Alloc // tuple of named results implicitResults []*Alloc // tuple of results targets *targets // linked stack of branch targets lblocks map[*ast.Object]*lblock // labelled blocks consts []*Const wr *HTMLWriter fakeExits BlockSet blocksets [5]BlockSet hasDefer bool } func (fn *Function) results() []*Alloc { if len(fn.namedResults) > 0 { return fn.namedResults } return fn.implicitResults } // BasicBlock represents an IR basic block. // // The final element of Instrs is always an explicit transfer of // control (If, Jump, Return, Panic, or Unreachable). // // A block may contain no Instructions only if it is unreachable, // i.e., Preds is nil. Empty blocks are typically pruned. // // BasicBlocks and their Preds/Succs relation form a (possibly cyclic) // graph independent of the IR Value graph: the control-flow graph or // CFG. It is illegal for multiple edges to exist between the same // pair of blocks. // // Each BasicBlock is also a node in the dominator tree of the CFG. // The tree may be navigated using Idom()/Dominees() and queried using // Dominates(). // // The order of Preds and Succs is significant (to Phi and If // instructions, respectively). // type BasicBlock struct { Index int // index of this block within Parent().Blocks Comment string // optional label; no semantic significance parent *Function // parent function Instrs []Instruction // instructions in order Preds, Succs []*BasicBlock // predecessors and successors succs2 [2]*BasicBlock // initial space for Succs dom domInfo // dominator tree info pdom domInfo // post-dominator tree info post int gaps int // number of nil Instrs (transient) rundefers int // number of rundefers (transient) } // Pure values ---------------------------------------- // A FreeVar represents a free variable of the function to which it // belongs. // // FreeVars are used to implement anonymous functions, whose free // variables are lexically captured in a closure formed by // MakeClosure. The value of such a free var is an Alloc or another // FreeVar and is considered a potentially escaping heap address, with // pointer type. // // FreeVars are also used to implement bound method closures. Such a // free var represents the receiver value and may be of any type that // has concrete methods. // // Pos() returns the position of the value that was captured, which // belongs to an enclosing function. // type FreeVar struct { node name string typ types.Type parent *Function referrers []Instruction // Transiently needed during building. outer Value // the Value captured from the enclosing context. } // A Parameter represents an input parameter of a function. // type Parameter struct { register name string object types.Object // a *types.Var; nil for non-source locals } // A Const represents the value of a constant expression. // // The underlying type of a constant may be any boolean, numeric, or // string type. In addition, a Const may represent the nil value of // any reference type---interface, map, channel, pointer, slice, or // function---but not "untyped nil". // // All source-level constant expressions are represented by a Const // of the same type and value. // // Value holds the exact value of the constant, independent of its // Type(), using the same representation as package go/constant uses for // constants, or nil for a typed nil value. // // Pos() returns token.NoPos. // // Example printed form: // Const {42} // Const {"test"} // Const {(3 + 4i)} // type Const struct { register Value constant.Value } // A Global is a named Value holding the address of a package-level // variable. // // Pos() returns the position of the ast.ValueSpec.Names[*] // identifier. // type Global struct { node name string object types.Object // a *types.Var; may be nil for synthetics e.g. init$guard typ types.Type Pkg *Package } // A Builtin represents a specific use of a built-in function, e.g. len. // // Builtins are immutable values. Builtins do not have addresses. // Builtins can only appear in CallCommon.Func. // // Name() indicates the function: one of the built-in functions from the // Go spec (excluding "make" and "new") or one of these ir-defined // intrinsics: // // // wrapnilchk returns ptr if non-nil, panics otherwise. // // (For use in indirection wrappers.) // func ir:wrapnilchk(ptr *T, recvType, methodName string) *T // // Object() returns a *types.Builtin for built-ins defined by the spec, // nil for others. // // Type() returns a *types.Signature representing the effective // signature of the built-in for this call. // type Builtin struct { node name string sig *types.Signature } // Value-defining instructions ---------------------------------------- // The Alloc instruction reserves space for a variable of the given type, // zero-initializes it, and yields its address. // // Alloc values are always addresses, and have pointer types, so the // type of the allocated variable is actually // Type().Underlying().(*types.Pointer).Elem(). // // If Heap is false, Alloc allocates space in the function's // activation record (frame); we refer to an Alloc(Heap=false) as a // "stack" alloc. Each stack Alloc returns the same address each time // it is executed within the same activation; the space is // re-initialized to zero. // // If Heap is true, Alloc allocates space in the heap; we // refer to an Alloc(Heap=true) as a "heap" alloc. Each heap Alloc // returns a different address each time it is executed. // // When Alloc is applied to a channel, map or slice type, it returns // the address of an uninitialized (nil) reference of that kind; store // the result of MakeSlice, MakeMap or MakeChan in that location to // instantiate these types. // // Pos() returns the ast.CompositeLit.Lbrace for a composite literal, // or the ast.CallExpr.Rparen for a call to new() or for a call that // allocates a varargs slice. // // Example printed form: // t1 = StackAlloc <*int> // t2 = HeapAlloc <*int> (new) // type Alloc struct { register Heap bool index int // dense numbering; for lifting } var _ Instruction = (*Sigma)(nil) var _ Value = (*Sigma)(nil) // The Sigma instruction represents an SSI σ-node, which splits values // at branches in the control flow. // // Conceptually, σ-nodes exist at the end of blocks that branch and // constitute parallel assignments to one value per destination block. // However, such a representation would be awkward to work with, so // instead we place σ-nodes at the beginning of branch targets. The // From field denotes to which incoming edge the node applies. // // Within a block, all σ-nodes must appear before all non-σ nodes. // // Example printed form: // t2 = Sigma [#0] t1 (x) // type Sigma struct { register From *BasicBlock X Value live bool // used during lifting } // The Phi instruction represents an SSA φ-node, which combines values // that differ across incoming control-flow edges and yields a new // value. Within a block, all φ-nodes must appear before all non-φ, non-σ // nodes. // // Pos() returns the position of the && or || for short-circuit // control-flow joins, or that of the *Alloc for φ-nodes inserted // during SSA renaming. // // Example printed form: // t3 = Phi 2:t1 4:t2 (x) // type Phi struct { register Edges []Value // Edges[i] is value for Block().Preds[i] live bool // used during lifting } // The Call instruction represents a function or method call. // // The Call instruction yields the function result if there is exactly // one. Otherwise it returns a tuple, the components of which are // accessed via Extract. // // See CallCommon for generic function call documentation. // // Pos() returns the ast.CallExpr.Lparen, if explicit in the source. // // Example printed form: // t3 = Call <()> println t1 t2 // t4 = Call <()> foo$1 // t6 = Invoke t5.String // type Call struct { register Call CallCommon } // The BinOp instruction yields the result of binary operation X Op Y. // // Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source. // // Example printed form: // t3 = BinOp {+} t2 t1 // type BinOp struct { register // One of: // ADD SUB MUL QUO REM + - * / % // AND OR XOR SHL SHR AND_NOT & | ^ << >> &^ // EQL NEQ LSS LEQ GTR GEQ == != < <= < >= Op token.Token X, Y Value } // The UnOp instruction yields the result of Op X. // XOR is bitwise complement. // SUB is negation. // NOT is logical negation. // // // Example printed form: // t2 = UnOp {^} t1 // type UnOp struct { register Op token.Token // One of: NOT SUB XOR ! - ^ X Value } // The Load instruction loads a value from a memory address. // // For implicit memory loads, Pos() returns the position of the // most closely associated source-level construct; the details are not // specified. // // Example printed form: // t2 = Load t1 // type Load struct { register X Value } // The ChangeType instruction applies to X a value-preserving type // change to Type(). // // Type changes are permitted: // - between a named type and its underlying type. // - between two named types of the same underlying type. // - between (possibly named) pointers to identical base types. // - from a bidirectional channel to a read- or write-channel, // optionally adding/removing a name. // // This operation cannot fail dynamically. // // Pos() returns the ast.CallExpr.Lparen, if the instruction arose // from an explicit conversion in the source. // // Example printed form: // t2 = ChangeType <*T> t1 // type ChangeType struct { register X Value } // The Convert instruction yields the conversion of value X to type // Type(). One or both of those types is basic (but possibly named). // // A conversion may change the value and representation of its operand. // Conversions are permitted: // - between real numeric types. // - between complex numeric types. // - between string and []byte or []rune. // - between pointers and unsafe.Pointer. // - between unsafe.Pointer and uintptr. // - from (Unicode) integer to (UTF-8) string. // A conversion may imply a type name change also. // // This operation cannot fail dynamically. // // Conversions of untyped string/number/bool constants to a specific // representation are eliminated during IR construction. // // Pos() returns the ast.CallExpr.Lparen, if the instruction arose // from an explicit conversion in the source. // // Example printed form: // t2 = Convert <[]byte> t1 // type Convert struct { register X Value } // ChangeInterface constructs a value of one interface type from a // value of another interface type known to be assignable to it. // This operation cannot fail. // // Pos() returns the ast.CallExpr.Lparen if the instruction arose from // an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the // instruction arose from an explicit e.(T) operation; or token.NoPos // otherwise. // // Example printed form: // t2 = ChangeInterface t1 // type ChangeInterface struct { register X Value } // MakeInterface constructs an instance of an interface type from a // value of a concrete type. // // Use Program.MethodSets.MethodSet(X.Type()) to find the method-set // of X, and Program.MethodValue(m) to find the implementation of a method. // // To construct the zero value of an interface type T, use: // NewConst(constant.MakeNil(), T, pos) // // Pos() returns the ast.CallExpr.Lparen, if the instruction arose // from an explicit conversion in the source. // // Example printed form: // t2 = MakeInterface t1 // type MakeInterface struct { register X Value } // The MakeClosure instruction yields a closure value whose code is // Fn and whose free variables' values are supplied by Bindings. // // Type() returns a (possibly named) *types.Signature. // // Pos() returns the ast.FuncLit.Type.Func for a function literal // closure or the ast.SelectorExpr.Sel for a bound method closure. // // Example printed form: // t1 = MakeClosure foo$1 t1 t2 // t5 = MakeClosure (T).foo$bound t4 // type MakeClosure struct { register Fn Value // always a *Function Bindings []Value // values for each free variable in Fn.FreeVars } // The MakeMap instruction creates a new hash-table-based map object // and yields a value of kind map. // // Type() returns a (possibly named) *types.Map. // // Pos() returns the ast.CallExpr.Lparen, if created by make(map), or // the ast.CompositeLit.Lbrack if created by a literal. // // Example printed form: // t1 = MakeMap // t2 = MakeMap t1 // type MakeMap struct { register Reserve Value // initial space reservation; nil => default } // The MakeChan instruction creates a new channel object and yields a // value of kind chan. // // Type() returns a (possibly named) *types.Chan. // // Pos() returns the ast.CallExpr.Lparen for the make(chan) that // created it. // // Example printed form: // t3 = MakeChan t1 // t4 = MakeChan t2 // type MakeChan struct { register Size Value // int; size of buffer; zero => synchronous. } // The MakeSlice instruction yields a slice of length Len backed by a // newly allocated array of length Cap. // // Both Len and Cap must be non-nil Values of integer type. // // (Alloc(types.Array) followed by Slice will not suffice because // Alloc can only create arrays of constant length.) // // Type() returns a (possibly named) *types.Slice. // // Pos() returns the ast.CallExpr.Lparen for the make([]T) that // created it. // // Example printed form: // t3 = MakeSlice <[]string> t1 t2 // t4 = MakeSlice t1 t2 // type MakeSlice struct { register Len Value Cap Value } // The Slice instruction yields a slice of an existing string, slice // or *array X between optional integer bounds Low and High. // // Dynamically, this instruction panics if X evaluates to a nil *array // pointer. // // Type() returns string if the type of X was string, otherwise a // *types.Slice with the same element type as X. // // Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice // operation, the ast.CompositeLit.Lbrace if created by a literal, or // NoPos if not explicit in the source (e.g. a variadic argument slice). // // Example printed form: // t4 = Slice <[]int> t3 t2 t1 // type Slice struct { register X Value // slice, string, or *array Low, High, Max Value // each may be nil } // The FieldAddr instruction yields the address of Field of *struct X. // // The field is identified by its index within the field list of the // struct type of X. // // Dynamically, this instruction panics if X evaluates to a nil // pointer. // // Type() returns a (possibly named) *types.Pointer. // // Pos() returns the position of the ast.SelectorExpr.Sel for the // field, if explicit in the source. // // Example printed form: // t2 = FieldAddr <*int> [0] (X) t1 // type FieldAddr struct { register X Value // *struct Field int // field is X.Type().Underlying().(*types.Pointer).Elem().Underlying().(*types.Struct).Field(Field) } // The Field instruction yields the Field of struct X. // // The field is identified by its index within the field list of the // struct type of X; by using numeric indices we avoid ambiguity of // package-local identifiers and permit compact representations. // // Pos() returns the position of the ast.SelectorExpr.Sel for the // field, if explicit in the source. // // Example printed form: // t2 = FieldAddr [0] (X) t1 // type Field struct { register X Value // struct Field int // index into X.Type().(*types.Struct).Fields } // The IndexAddr instruction yields the address of the element at // index Index of collection X. Index is an integer expression. // // The elements of maps and strings are not addressable; use StringLookup, MapLookup or // MapUpdate instead. // // Dynamically, this instruction panics if X evaluates to a nil *array // pointer. // // Type() returns a (possibly named) *types.Pointer. // // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if // explicit in the source. // // Example printed form: // t3 = IndexAddr <*int> t2 t1 // type IndexAddr struct { register X Value // slice or *array, Index Value // numeric index } // The Index instruction yields element Index of array X. // // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if // explicit in the source. // // Example printed form: // t3 = Index t2 t1 // type Index struct { register X Value // array Index Value // integer index } // The MapLookup instruction yields element Index of collection X, a map. // // If CommaOk, the result is a 2-tuple of the value above and a // boolean indicating the result of a map membership test for the key. // The components of the tuple are accessed using Extract. // // Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source. // // Example printed form: // t4 = MapLookup t3 t1 // t6 = MapLookup <(string, bool)> t3 t2 // type MapLookup struct { register X Value // map Index Value // key-typed index CommaOk bool // return a value,ok pair } // The StringLookup instruction yields element Index of collection X, a string. // Index is an integer expression. // // Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source. // // Example printed form: // t3 = StringLookup t2 t1 // type StringLookup struct { register X Value // string Index Value // numeric index } // SelectState is a helper for Select. // It represents one goal state and its corresponding communication. // type SelectState struct { Dir types.ChanDir // direction of case (SendOnly or RecvOnly) Chan Value // channel to use (for send or receive) Send Value // value to send (for send) Pos token.Pos // position of token.ARROW DebugNode ast.Node // ast.SendStmt or ast.UnaryExpr(<-) [debug mode] } // The Select instruction tests whether (or blocks until) one // of the specified sent or received states is entered. // // Let n be the number of States for which Dir==RECV and Tᵢ (0 ≤ i < n) // be the element type of each such state's Chan. // Select returns an n+2-tuple // (index int, recvOk bool, r₀ T₀, ... rₙ-1 Tₙ-1) // The tuple's components, described below, must be accessed via the // Extract instruction. // // If Blocking, select waits until exactly one state holds, i.e. a // channel becomes ready for the designated operation of sending or // receiving; select chooses one among the ready states // pseudorandomly, performs the send or receive operation, and sets // 'index' to the index of the chosen channel. // // If !Blocking, select doesn't block if no states hold; instead it // returns immediately with index equal to -1. // // If the chosen channel was used for a receive, the rᵢ component is // set to the received value, where i is the index of that state among // all n receive states; otherwise rᵢ has the zero value of type Tᵢ. // Note that the receive index i is not the same as the state // index index. // // The second component of the triple, recvOk, is a boolean whose value // is true iff the selected operation was a receive and the receive // successfully yielded a value. // // Pos() returns the ast.SelectStmt.Select. // // Example printed form: // t6 = SelectNonBlocking <(index int, ok bool, int)> [<-t4, t5<-t1] // t11 = SelectBlocking <(index int, ok bool)> [] // type Select struct { register States []*SelectState Blocking bool } // The Range instruction yields an iterator over the domain and range // of X, which must be a string or map. // // Elements are accessed via Next. // // Type() returns an opaque and degenerate "rangeIter" type. // // Pos() returns the ast.RangeStmt.For. // // Example printed form: // t2 = Range t1 // type Range struct { register X Value // string or map } // The Next instruction reads and advances the (map or string) // iterator Iter and returns a 3-tuple value (ok, k, v). If the // iterator is not exhausted, ok is true and k and v are the next // elements of the domain and range, respectively. Otherwise ok is // false and k and v are undefined. // // Components of the tuple are accessed using Extract. // // The IsString field distinguishes iterators over strings from those // over maps, as the Type() alone is insufficient: consider // map[int]rune. // // Type() returns a *types.Tuple for the triple (ok, k, v). // The types of k and/or v may be types.Invalid. // // Example printed form: // t5 = Next <(ok bool, k int, v rune)> t2 // t5 = Next <(ok bool, k invalid type, v invalid type)> t2 // type Next struct { register Iter Value IsString bool // true => string iterator; false => map iterator. } // The TypeAssert instruction tests whether interface value X has type // AssertedType. // // If !CommaOk, on success it returns v, the result of the conversion // (defined below); on failure it panics. // // If CommaOk: on success it returns a pair (v, true) where v is the // result of the conversion; on failure it returns (z, false) where z // is AssertedType's zero value. The components of the pair must be // accessed using the Extract instruction. // // If AssertedType is a concrete type, TypeAssert checks whether the // dynamic type in interface X is equal to it, and if so, the result // of the conversion is a copy of the value in the interface. // // If AssertedType is an interface, TypeAssert checks whether the // dynamic type of the interface is assignable to it, and if so, the // result of the conversion is a copy of the interface value X. // If AssertedType is a superinterface of X.Type(), the operation will // fail iff the operand is nil. (Contrast with ChangeInterface, which // performs no nil-check.) // // Type() reflects the actual type of the result, possibly a // 2-types.Tuple; AssertedType is the asserted type. // // Pos() returns the ast.CallExpr.Lparen if the instruction arose from // an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the // instruction arose from an explicit e.(T) operation; or the // ast.CaseClause.Case if the instruction arose from a case of a // type-switch statement. // // Example printed form: // t2 = TypeAssert t1 // t4 = TypeAssert <(value fmt.Stringer, ok bool)> t1 // type TypeAssert struct { register X Value AssertedType types.Type CommaOk bool } // The Extract instruction yields component Index of Tuple. // // This is used to access the results of instructions with multiple // return values, such as Call, TypeAssert, Next, Recv, // MapLookup and others. // // Example printed form: // t7 = Extract [1] (ok) t4 // type Extract struct { register Tuple Value Index int } // Instructions executed for effect. They do not yield a value. -------------------- // The Jump instruction transfers control to the sole successor of its // owning block. // // A Jump must be the last instruction of its containing BasicBlock. // // Pos() returns NoPos. // // Example printed form: // Jump → b1 // type Jump struct { anInstruction Comment string } // The Unreachable pseudo-instruction signals that execution cannot // continue after the preceding function call because it terminates // the process. // // The instruction acts as a control instruction, jumping to the exit // block. However, this jump will never execute. // // An Unreachable instruction must be the last instruction of its // containing BasicBlock. // // Example printed form: // Unreachable → b1 // type Unreachable struct { anInstruction } // The If instruction transfers control to one of the two successors // of its owning block, depending on the boolean Cond: the first if // true, the second if false. // // An If instruction must be the last instruction of its containing // BasicBlock. // // Pos() returns the *ast.IfStmt, if explicit in the source. // // Example printed form: // If t2 → b1 b2 // type If struct { anInstruction Cond Value } type ConstantSwitch struct { anInstruction Tag Value // Constant branch conditions. A nil Value denotes the (implicit // or explicit) default branch. Conds []Value } type TypeSwitch struct { register Tag Value Conds []types.Type } // The Return instruction returns values and control back to the calling // function. // // len(Results) is always equal to the number of results in the // function's signature. // // If len(Results) > 1, Return returns a tuple value with the specified // components which the caller must access using Extract instructions. // // There is no instruction to return a ready-made tuple like those // returned by a "value,ok"-mode TypeAssert, MapLookup or Recv or // a tail-call to a function with multiple result parameters. // // Return must be the last instruction of its containing BasicBlock. // Such a block has no successors. // // Pos() returns the ast.ReturnStmt.Return, if explicit in the source. // // Example printed form: // Return // Return t1 t2 // type Return struct { anInstruction Results []Value } // The RunDefers instruction pops and invokes the entire stack of // procedure calls pushed by Defer instructions in this function. // // It is legal to encounter multiple 'rundefers' instructions in a // single control-flow path through a function; this is useful in // the combined init() function, for example. // // Pos() returns NoPos. // // Example printed form: // RunDefers // type RunDefers struct { anInstruction } // The Panic instruction initiates a panic with value X. // // A Panic instruction must be the last instruction of its containing // BasicBlock, which must have one successor, the exit block. // // NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction; // they are treated as calls to a built-in function. // // Pos() returns the ast.CallExpr.Lparen if this panic was explicit // in the source. // // Example printed form: // Panic t1 // type Panic struct { anInstruction X Value // an interface{} } // The Go instruction creates a new goroutine and calls the specified // function within it. // // See CallCommon for generic function call documentation. // // Pos() returns the ast.GoStmt.Go. // // Example printed form: // Go println t1 // Go t3 // GoInvoke t4.Bar t2 // type Go struct { anInstruction Call CallCommon } // The Defer instruction pushes the specified call onto a stack of // functions to be called by a RunDefers instruction or by a panic. // // See CallCommon for generic function call documentation. // // Pos() returns the ast.DeferStmt.Defer. // // Example printed form: // Defer println t1 // Defer t3 // DeferInvoke t4.Bar t2 // type Defer struct { anInstruction Call CallCommon } // The Send instruction sends X on channel Chan. // // Pos() returns the ast.SendStmt.Arrow, if explicit in the source. // // Example printed form: // Send t2 t1 // type Send struct { anInstruction Chan, X Value } // The Recv instruction receives from channel Chan. // // If CommaOk, the result is a 2-tuple of the value above // and a boolean indicating the success of the receive. The // components of the tuple are accessed using Extract. // // Pos() returns the ast.UnaryExpr.OpPos, if explicit in the source. // For receive operations implicit in ranging over a channel, // Pos() returns the ast.RangeStmt.For. // // Example printed form: // t2 = Recv t1 // t3 = Recv <(int, bool)> t1 type Recv struct { register Chan Value CommaOk bool } // The Store instruction stores Val at address Addr. // Stores can be of arbitrary types. // // Pos() returns the position of the source-level construct most closely // associated with the memory store operation. // Since implicit memory stores are numerous and varied and depend upon // implementation choices, the details are not specified. // // Example printed form: // Store {int} t2 t1 // type Store struct { anInstruction Addr Value Val Value } // The BlankStore instruction is emitted for assignments to the blank // identifier. // // BlankStore is a pseudo-instruction: it has no dynamic effect. // // Pos() returns NoPos. // // Example printed form: // BlankStore t1 // type BlankStore struct { anInstruction Val Value } // The MapUpdate instruction updates the association of Map[Key] to // Value. // // Pos() returns the ast.KeyValueExpr.Colon or ast.IndexExpr.Lbrack, // if explicit in the source. // // Example printed form: // MapUpdate t3 t1 t2 // type MapUpdate struct { anInstruction Map Value Key Value Value Value } // A DebugRef instruction maps a source-level expression Expr to the // IR value X that represents the value (!IsAddr) or address (IsAddr) // of that expression. // // DebugRef is a pseudo-instruction: it has no dynamic effect. // // Pos() returns Expr.Pos(), the start position of the source-level // expression. This is not the same as the "designated" token as // documented at Value.Pos(). e.g. CallExpr.Pos() does not return the // position of the ("designated") Lparen token. // // DebugRefs are generated only for functions built with debugging // enabled; see Package.SetDebugMode() and the GlobalDebug builder // mode flag. // // DebugRefs are not emitted for ast.Idents referring to constants or // predeclared identifiers, since they are trivial and numerous. // Nor are they emitted for ast.ParenExprs. // // (By representing these as instructions, rather than out-of-band, // consistency is maintained during transformation passes by the // ordinary SSA renaming machinery.) // // Example printed form: // ; *ast.CallExpr @ 102:9 is t5 // ; var x float64 @ 109:72 is x // ; address of *ast.CompositeLit @ 216:10 is t0 // type DebugRef struct { anInstruction Expr ast.Expr // the referring expression (never *ast.ParenExpr) object types.Object // the identity of the source var/func IsAddr bool // Expr is addressable and X is the address it denotes X Value // the value or address of Expr } // Embeddable mix-ins and helpers for common parts of other structs. ----------- // register is a mix-in embedded by all IR values that are also // instructions, i.e. virtual registers, and provides a uniform // implementation of most of the Value interface: Value.Name() is a // numbered register (e.g. "t0"); the other methods are field accessors. // // Temporary names are automatically assigned to each register on // completion of building a function in IR form. // type register struct { anInstruction typ types.Type // type of virtual register referrers []Instruction } type node struct { source ast.Node id ID } func (n *node) setID(id ID) { n.id = id } func (n node) ID() ID { return n.id } func (n *node) setSource(source ast.Node) { n.source = source } func (n *node) Source() ast.Node { return n.source } func (n *node) Pos() token.Pos { if n.source != nil { return n.source.Pos() } return token.NoPos } // anInstruction is a mix-in embedded by all Instructions. // It provides the implementations of the Block and setBlock methods. type anInstruction struct { node block *BasicBlock // the basic block of this instruction } // CallCommon is contained by Go, Defer and Call to hold the // common parts of a function or method call. // // Each CallCommon exists in one of two modes, function call and // interface method invocation, or "call" and "invoke" for short. // // 1. "call" mode: when Method is nil (!IsInvoke), a CallCommon // represents an ordinary function call of the value in Value, // which may be a *Builtin, a *Function or any other value of kind // 'func'. // // Value may be one of: // (a) a *Function, indicating a statically dispatched call // to a package-level function, an anonymous function, or // a method of a named type. // (b) a *MakeClosure, indicating an immediately applied // function literal with free variables. // (c) a *Builtin, indicating a statically dispatched call // to a built-in function. // (d) any other value, indicating a dynamically dispatched // function call. // StaticCallee returns the identity of the callee in cases // (a) and (b), nil otherwise. // // Args contains the arguments to the call. If Value is a method, // Args[0] contains the receiver parameter. // // Example printed form: // t3 = Call <()> println t1 t2 // Go t3 // Defer t3 // // 2. "invoke" mode: when Method is non-nil (IsInvoke), a CallCommon // represents a dynamically dispatched call to an interface method. // In this mode, Value is the interface value and Method is the // interface's abstract method. Note: an abstract method may be // shared by multiple interfaces due to embedding; Value.Type() // provides the specific interface used for this call. // // Value is implicitly supplied to the concrete method implementation // as the receiver parameter; in other words, Args[0] holds not the // receiver but the first true argument. // // Example printed form: // t6 = Invoke t5.String // GoInvoke t4.Bar t2 // DeferInvoke t4.Bar t2 // // For all calls to variadic functions (Signature().Variadic()), // the last element of Args is a slice. // type CallCommon struct { Value Value // receiver (invoke mode) or func value (call mode) Method *types.Func // abstract method (invoke mode) Args []Value // actual parameters (in static method call, includes receiver) Results Value } // IsInvoke returns true if this call has "invoke" (not "call") mode. func (c *CallCommon) IsInvoke() bool { return c.Method != nil } // Signature returns the signature of the called function. // // For an "invoke"-mode call, the signature of the interface method is // returned. // // In either "call" or "invoke" mode, if the callee is a method, its // receiver is represented by sig.Recv, not sig.Params().At(0). // func (c *CallCommon) Signature() *types.Signature { if c.Method != nil { return c.Method.Type().(*types.Signature) } return c.Value.Type().Underlying().(*types.Signature) } // StaticCallee returns the callee if this is a trivially static // "call"-mode call to a function. func (c *CallCommon) StaticCallee() *Function { switch fn := c.Value.(type) { case *Function: return fn case *MakeClosure: return fn.Fn.(*Function) } return nil } // Description returns a description of the mode of this call suitable // for a user interface, e.g., "static method call". func (c *CallCommon) Description() string { switch fn := c.Value.(type) { case *Builtin: return "built-in function call" case *MakeClosure: return "static function closure call" case *Function: if fn.Signature.Recv() != nil { return "static method call" } return "static function call" } if c.IsInvoke() { return "dynamic method call" // ("invoke" mode) } return "dynamic function call" } // The CallInstruction interface, implemented by *Go, *Defer and *Call, // exposes the common parts of function-calling instructions, // yet provides a way back to the Value defined by *Call alone. // type CallInstruction interface { Instruction Common() *CallCommon // returns the common parts of the call Value() *Call } func (s *Call) Common() *CallCommon { return &s.Call } func (s *Defer) Common() *CallCommon { return &s.Call } func (s *Go) Common() *CallCommon { return &s.Call } func (s *Call) Value() *Call { return s } func (s *Defer) Value() *Call { return nil } func (s *Go) Value() *Call { return nil } func (v *Builtin) Type() types.Type { return v.sig } func (v *Builtin) Name() string { return v.name } func (*Builtin) Referrers() *[]Instruction { return nil } func (v *Builtin) Pos() token.Pos { return token.NoPos } func (v *Builtin) Object() types.Object { return types.Universe.Lookup(v.name) } func (v *Builtin) Parent() *Function { return nil } func (v *FreeVar) Type() types.Type { return v.typ } func (v *FreeVar) Name() string { return v.name } func (v *FreeVar) Referrers() *[]Instruction { return &v.referrers } func (v *FreeVar) Parent() *Function { return v.parent } func (v *Global) Type() types.Type { return v.typ } func (v *Global) Name() string { return v.name } func (v *Global) Parent() *Function { return nil } func (v *Global) Referrers() *[]Instruction { return nil } func (v *Global) Token() token.Token { return token.VAR } func (v *Global) Object() types.Object { return v.object } func (v *Global) String() string { return v.RelString(nil) } func (v *Global) Package() *Package { return v.Pkg } func (v *Global) RelString(from *types.Package) string { return relString(v, from) } func (v *Function) Name() string { return v.name } func (v *Function) Type() types.Type { return v.Signature } func (v *Function) Token() token.Token { return token.FUNC } func (v *Function) Object() types.Object { return v.object } func (v *Function) String() string { return v.RelString(nil) } func (v *Function) Package() *Package { return v.Pkg } func (v *Function) Parent() *Function { return v.parent } func (v *Function) Referrers() *[]Instruction { if v.parent != nil { return &v.referrers } return nil } func (v *Parameter) Object() types.Object { return v.object } func (v *Alloc) Type() types.Type { return v.typ } func (v *Alloc) Referrers() *[]Instruction { return &v.referrers } func (v *register) Type() types.Type { return v.typ } func (v *register) setType(typ types.Type) { v.typ = typ } func (v *register) Name() string { return fmt.Sprintf("t%d", v.id) } func (v *register) Referrers() *[]Instruction { return &v.referrers } func (v *anInstruction) Parent() *Function { return v.block.parent } func (v *anInstruction) Block() *BasicBlock { return v.block } func (v *anInstruction) setBlock(block *BasicBlock) { v.block = block } func (v *anInstruction) Referrers() *[]Instruction { return nil } func (t *Type) Name() string { return t.object.Name() } func (t *Type) Pos() token.Pos { return t.object.Pos() } func (t *Type) Type() types.Type { return t.object.Type() } func (t *Type) Token() token.Token { return token.TYPE } func (t *Type) Object() types.Object { return t.object } func (t *Type) String() string { return t.RelString(nil) } func (t *Type) Package() *Package { return t.pkg } func (t *Type) RelString(from *types.Package) string { return relString(t, from) } func (c *NamedConst) Name() string { return c.object.Name() } func (c *NamedConst) Pos() token.Pos { return c.object.Pos() } func (c *NamedConst) String() string { return c.RelString(nil) } func (c *NamedConst) Type() types.Type { return c.object.Type() } func (c *NamedConst) Token() token.Token { return token.CONST } func (c *NamedConst) Object() types.Object { return c.object } func (c *NamedConst) Package() *Package { return c.pkg } func (c *NamedConst) RelString(from *types.Package) string { return relString(c, from) } // Func returns the package-level function of the specified name, // or nil if not found. // func (p *Package) Func(name string) (f *Function) { f, _ = p.Members[name].(*Function) return } // Var returns the package-level variable of the specified name, // or nil if not found. // func (p *Package) Var(name string) (g *Global) { g, _ = p.Members[name].(*Global) return } // Const returns the package-level constant of the specified name, // or nil if not found. // func (p *Package) Const(name string) (c *NamedConst) { c, _ = p.Members[name].(*NamedConst) return } // Type returns the package-level type of the specified name, // or nil if not found. // func (p *Package) Type(name string) (t *Type) { t, _ = p.Members[name].(*Type) return } func (s *DebugRef) Pos() token.Pos { return s.Expr.Pos() } // Operands. func (v *Alloc) Operands(rands []*Value) []*Value { return rands } func (v *BinOp) Operands(rands []*Value) []*Value { return append(rands, &v.X, &v.Y) } func (c *CallCommon) Operands(rands []*Value) []*Value { rands = append(rands, &c.Value) for i := range c.Args { rands = append(rands, &c.Args[i]) } return rands } func (s *Go) Operands(rands []*Value) []*Value { return s.Call.Operands(rands) } func (s *Call) Operands(rands []*Value) []*Value { return s.Call.Operands(rands) } func (s *Defer) Operands(rands []*Value) []*Value { return s.Call.Operands(rands) } func (v *ChangeInterface) Operands(rands []*Value) []*Value { return append(rands, &v.X) } func (v *ChangeType) Operands(rands []*Value) []*Value { return append(rands, &v.X) } func (v *Convert) Operands(rands []*Value) []*Value { return append(rands, &v.X) } func (s *DebugRef) Operands(rands []*Value) []*Value { return append(rands, &s.X) } func (v *Extract) Operands(rands []*Value) []*Value { return append(rands, &v.Tuple) } func (v *Field) Operands(rands []*Value) []*Value { return append(rands, &v.X) } func (v *FieldAddr) Operands(rands []*Value) []*Value { return append(rands, &v.X) } func (s *If) Operands(rands []*Value) []*Value { return append(rands, &s.Cond) } func (s *ConstantSwitch) Operands(rands []*Value) []*Value { rands = append(rands, &s.Tag) for i := range s.Conds { rands = append(rands, &s.Conds[i]) } return rands } func (s *TypeSwitch) Operands(rands []*Value) []*Value { rands = append(rands, &s.Tag) return rands } func (v *Index) Operands(rands []*Value) []*Value { return append(rands, &v.X, &v.Index) } func (v *IndexAddr) Operands(rands []*Value) []*Value { return append(rands, &v.X, &v.Index) } func (*Jump) Operands(rands []*Value) []*Value { return rands } func (*Unreachable) Operands(rands []*Value) []*Value { return rands } func (v *MapLookup) Operands(rands []*Value) []*Value { return append(rands, &v.X, &v.Index) } func (v *StringLookup) Operands(rands []*Value) []*Value { return append(rands, &v.X, &v.Index) } func (v *MakeChan) Operands(rands []*Value) []*Value { return append(rands, &v.Size) } func (v *MakeClosure) Operands(rands []*Value) []*Value { rands = append(rands, &v.Fn) for i := range v.Bindings { rands = append(rands, &v.Bindings[i]) } return rands } func (v *MakeInterface) Operands(rands []*Value) []*Value { return append(rands, &v.X) } func (v *MakeMap) Operands(rands []*Value) []*Value { return append(rands, &v.Reserve) } func (v *MakeSlice) Operands(rands []*Value) []*Value { return append(rands, &v.Len, &v.Cap) } func (v *MapUpdate) Operands(rands []*Value) []*Value { return append(rands, &v.Map, &v.Key, &v.Value) } func (v *Next) Operands(rands []*Value) []*Value { return append(rands, &v.Iter) } func (s *Panic) Operands(rands []*Value) []*Value { return append(rands, &s.X) } func (v *Sigma) Operands(rands []*Value) []*Value { return append(rands, &v.X) } func (v *Phi) Operands(rands []*Value) []*Value { for i := range v.Edges { rands = append(rands, &v.Edges[i]) } return rands } func (v *Range) Operands(rands []*Value) []*Value { return append(rands, &v.X) } func (s *Return) Operands(rands []*Value) []*Value { for i := range s.Results { rands = append(rands, &s.Results[i]) } return rands } func (*RunDefers) Operands(rands []*Value) []*Value { return rands } func (v *Select) Operands(rands []*Value) []*Value { for i := range v.States { rands = append(rands, &v.States[i].Chan, &v.States[i].Send) } return rands } func (s *Send) Operands(rands []*Value) []*Value { return append(rands, &s.Chan, &s.X) } func (recv *Recv) Operands(rands []*Value) []*Value { return append(rands, &recv.Chan) } func (v *Slice) Operands(rands []*Value) []*Value { return append(rands, &v.X, &v.Low, &v.High, &v.Max) } func (s *Store) Operands(rands []*Value) []*Value { return append(rands, &s.Addr, &s.Val) } func (s *BlankStore) Operands(rands []*Value) []*Value { return append(rands, &s.Val) } func (v *TypeAssert) Operands(rands []*Value) []*Value { return append(rands, &v.X) } func (v *UnOp) Operands(rands []*Value) []*Value { return append(rands, &v.X) } func (v *Load) Operands(rands []*Value) []*Value { return append(rands, &v.X) } // Non-Instruction Values: func (v *Builtin) Operands(rands []*Value) []*Value { return rands } func (v *FreeVar) Operands(rands []*Value) []*Value { return rands } func (v *Const) Operands(rands []*Value) []*Value { return rands } func (v *Function) Operands(rands []*Value) []*Value { return rands } func (v *Global) Operands(rands []*Value) []*Value { return rands } func (v *Parameter) Operands(rands []*Value) []*Value { return rands }