Giant blob of minor changes
[dotfiles/.git] / .config / coc / extensions / coc-go-data / tools / pkg / mod / github.com / google / go-cmp@v0.5.1 / cmp / compare.go
diff --git a/.config/coc/extensions/coc-go-data/tools/pkg/mod/github.com/google/go-cmp@v0.5.1/cmp/compare.go b/.config/coc/extensions/coc-go-data/tools/pkg/mod/github.com/google/go-cmp@v0.5.1/cmp/compare.go
new file mode 100644 (file)
index 0000000..580ae20
--- /dev/null
@@ -0,0 +1,682 @@
+// Copyright 2017, The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE.md file.
+
+// Package cmp determines equality of values.
+//
+// This package is intended to be a more powerful and safer alternative to
+// reflect.DeepEqual for comparing whether two values are semantically equal.
+// It is intended to only be used in tests, as performance is not a goal and
+// it may panic if it cannot compare the values. Its propensity towards
+// panicking means that its unsuitable for production environments where a
+// spurious panic may be fatal.
+//
+// The primary features of cmp are:
+//
+// • When the default behavior of equality does not suit the needs of the test,
+// custom equality functions can override the equality operation.
+// For example, an equality function may report floats as equal so long as they
+// are within some tolerance of each other.
+//
+// • Types that have an Equal method may use that method to determine equality.
+// This allows package authors to determine the equality operation for the types
+// that they define.
+//
+// • If no custom equality functions are used and no Equal method is defined,
+// equality is determined by recursively comparing the primitive kinds on both
+// values, much like reflect.DeepEqual. Unlike reflect.DeepEqual, unexported
+// fields are not compared by default; they result in panics unless suppressed
+// by using an Ignore option (see cmpopts.IgnoreUnexported) or explicitly
+// compared using the Exporter option.
+package cmp
+
+import (
+       "fmt"
+       "reflect"
+       "strings"
+
+       "github.com/google/go-cmp/cmp/internal/diff"
+       "github.com/google/go-cmp/cmp/internal/flags"
+       "github.com/google/go-cmp/cmp/internal/function"
+       "github.com/google/go-cmp/cmp/internal/value"
+)
+
+// Equal reports whether x and y are equal by recursively applying the
+// following rules in the given order to x and y and all of their sub-values:
+//
+// • Let S be the set of all Ignore, Transformer, and Comparer options that
+// remain after applying all path filters, value filters, and type filters.
+// If at least one Ignore exists in S, then the comparison is ignored.
+// If the number of Transformer and Comparer options in S is greater than one,
+// then Equal panics because it is ambiguous which option to use.
+// If S contains a single Transformer, then use that to transform the current
+// values and recursively call Equal on the output values.
+// If S contains a single Comparer, then use that to compare the current values.
+// Otherwise, evaluation proceeds to the next rule.
+//
+// • If the values have an Equal method of the form "(T) Equal(T) bool" or
+// "(T) Equal(I) bool" where T is assignable to I, then use the result of
+// x.Equal(y) even if x or y is nil. Otherwise, no such method exists and
+// evaluation proceeds to the next rule.
+//
+// • Lastly, try to compare x and y based on their basic kinds.
+// Simple kinds like booleans, integers, floats, complex numbers, strings, and
+// channels are compared using the equivalent of the == operator in Go.
+// Functions are only equal if they are both nil, otherwise they are unequal.
+//
+// Structs are equal if recursively calling Equal on all fields report equal.
+// If a struct contains unexported fields, Equal panics unless an Ignore option
+// (e.g., cmpopts.IgnoreUnexported) ignores that field or the Exporter option
+// explicitly permits comparing the unexported field.
+//
+// Slices are equal if they are both nil or both non-nil, where recursively
+// calling Equal on all non-ignored slice or array elements report equal.
+// Empty non-nil slices and nil slices are not equal; to equate empty slices,
+// consider using cmpopts.EquateEmpty.
+//
+// Maps are equal if they are both nil or both non-nil, where recursively
+// calling Equal on all non-ignored map entries report equal.
+// Map keys are equal according to the == operator.
+// To use custom comparisons for map keys, consider using cmpopts.SortMaps.
+// Empty non-nil maps and nil maps are not equal; to equate empty maps,
+// consider using cmpopts.EquateEmpty.
+//
+// Pointers and interfaces are equal if they are both nil or both non-nil,
+// where they have the same underlying concrete type and recursively
+// calling Equal on the underlying values reports equal.
+//
+// Before recursing into a pointer, slice element, or map, the current path
+// is checked to detect whether the address has already been visited.
+// If there is a cycle, then the pointed at values are considered equal
+// only if both addresses were previously visited in the same path step.
+func Equal(x, y interface{}, opts ...Option) bool {
+       s := newState(opts)
+       s.compareAny(rootStep(x, y))
+       return s.result.Equal()
+}
+
+// Diff returns a human-readable report of the differences between two values.
+// It returns an empty string if and only if Equal returns true for the same
+// input values and options.
+//
+// The output is displayed as a literal in pseudo-Go syntax.
+// At the start of each line, a "-" prefix indicates an element removed from x,
+// a "+" prefix to indicates an element added to y, and the lack of a prefix
+// indicates an element common to both x and y. If possible, the output
+// uses fmt.Stringer.String or error.Error methods to produce more humanly
+// readable outputs. In such cases, the string is prefixed with either an
+// 's' or 'e' character, respectively, to indicate that the method was called.
+//
+// Do not depend on this output being stable. If you need the ability to
+// programmatically interpret the difference, consider using a custom Reporter.
+func Diff(x, y interface{}, opts ...Option) string {
+       s := newState(opts)
+
+       // Optimization: If there are no other reporters, we can optimize for the
+       // common case where the result is equal (and thus no reported difference).
+       // This avoids the expensive construction of a difference tree.
+       if len(s.reporters) == 0 {
+               s.compareAny(rootStep(x, y))
+               if s.result.Equal() {
+                       return ""
+               }
+               s.result = diff.Result{} // Reset results
+       }
+
+       r := new(defaultReporter)
+       s.reporters = append(s.reporters, reporter{r})
+       s.compareAny(rootStep(x, y))
+       d := r.String()
+       if (d == "") != s.result.Equal() {
+               panic("inconsistent difference and equality results")
+       }
+       return d
+}
+
+// rootStep constructs the first path step. If x and y have differing types,
+// then they are stored within an empty interface type.
+func rootStep(x, y interface{}) PathStep {
+       vx := reflect.ValueOf(x)
+       vy := reflect.ValueOf(y)
+
+       // If the inputs are different types, auto-wrap them in an empty interface
+       // so that they have the same parent type.
+       var t reflect.Type
+       if !vx.IsValid() || !vy.IsValid() || vx.Type() != vy.Type() {
+               t = reflect.TypeOf((*interface{})(nil)).Elem()
+               if vx.IsValid() {
+                       vvx := reflect.New(t).Elem()
+                       vvx.Set(vx)
+                       vx = vvx
+               }
+               if vy.IsValid() {
+                       vvy := reflect.New(t).Elem()
+                       vvy.Set(vy)
+                       vy = vvy
+               }
+       } else {
+               t = vx.Type()
+       }
+
+       return &pathStep{t, vx, vy}
+}
+
+type state struct {
+       // These fields represent the "comparison state".
+       // Calling statelessCompare must not result in observable changes to these.
+       result    diff.Result // The current result of comparison
+       curPath   Path        // The current path in the value tree
+       curPtrs   pointerPath // The current set of visited pointers
+       reporters []reporter  // Optional reporters
+
+       // recChecker checks for infinite cycles applying the same set of
+       // transformers upon the output of itself.
+       recChecker recChecker
+
+       // dynChecker triggers pseudo-random checks for option correctness.
+       // It is safe for statelessCompare to mutate this value.
+       dynChecker dynChecker
+
+       // These fields, once set by processOption, will not change.
+       exporters []exporter // List of exporters for structs with unexported fields
+       opts      Options    // List of all fundamental and filter options
+}
+
+func newState(opts []Option) *state {
+       // Always ensure a validator option exists to validate the inputs.
+       s := &state{opts: Options{validator{}}}
+       s.curPtrs.Init()
+       s.processOption(Options(opts))
+       return s
+}
+
+func (s *state) processOption(opt Option) {
+       switch opt := opt.(type) {
+       case nil:
+       case Options:
+               for _, o := range opt {
+                       s.processOption(o)
+               }
+       case coreOption:
+               type filtered interface {
+                       isFiltered() bool
+               }
+               if fopt, ok := opt.(filtered); ok && !fopt.isFiltered() {
+                       panic(fmt.Sprintf("cannot use an unfiltered option: %v", opt))
+               }
+               s.opts = append(s.opts, opt)
+       case exporter:
+               s.exporters = append(s.exporters, opt)
+       case reporter:
+               s.reporters = append(s.reporters, opt)
+       default:
+               panic(fmt.Sprintf("unknown option %T", opt))
+       }
+}
+
+// statelessCompare compares two values and returns the result.
+// This function is stateless in that it does not alter the current result,
+// or output to any registered reporters.
+func (s *state) statelessCompare(step PathStep) diff.Result {
+       // We do not save and restore curPath and curPtrs because all of the
+       // compareX methods should properly push and pop from them.
+       // It is an implementation bug if the contents of the paths differ from
+       // when calling this function to when returning from it.
+
+       oldResult, oldReporters := s.result, s.reporters
+       s.result = diff.Result{} // Reset result
+       s.reporters = nil        // Remove reporters to avoid spurious printouts
+       s.compareAny(step)
+       res := s.result
+       s.result, s.reporters = oldResult, oldReporters
+       return res
+}
+
+func (s *state) compareAny(step PathStep) {
+       // Update the path stack.
+       s.curPath.push(step)
+       defer s.curPath.pop()
+       for _, r := range s.reporters {
+               r.PushStep(step)
+               defer r.PopStep()
+       }
+       s.recChecker.Check(s.curPath)
+
+       // Cycle-detection for slice elements (see NOTE in compareSlice).
+       t := step.Type()
+       vx, vy := step.Values()
+       if si, ok := step.(SliceIndex); ok && si.isSlice && vx.IsValid() && vy.IsValid() {
+               px, py := vx.Addr(), vy.Addr()
+               if eq, visited := s.curPtrs.Push(px, py); visited {
+                       s.report(eq, reportByCycle)
+                       return
+               }
+               defer s.curPtrs.Pop(px, py)
+       }
+
+       // Rule 1: Check whether an option applies on this node in the value tree.
+       if s.tryOptions(t, vx, vy) {
+               return
+       }
+
+       // Rule 2: Check whether the type has a valid Equal method.
+       if s.tryMethod(t, vx, vy) {
+               return
+       }
+
+       // Rule 3: Compare based on the underlying kind.
+       switch t.Kind() {
+       case reflect.Bool:
+               s.report(vx.Bool() == vy.Bool(), 0)
+       case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
+               s.report(vx.Int() == vy.Int(), 0)
+       case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
+               s.report(vx.Uint() == vy.Uint(), 0)
+       case reflect.Float32, reflect.Float64:
+               s.report(vx.Float() == vy.Float(), 0)
+       case reflect.Complex64, reflect.Complex128:
+               s.report(vx.Complex() == vy.Complex(), 0)
+       case reflect.String:
+               s.report(vx.String() == vy.String(), 0)
+       case reflect.Chan, reflect.UnsafePointer:
+               s.report(vx.Pointer() == vy.Pointer(), 0)
+       case reflect.Func:
+               s.report(vx.IsNil() && vy.IsNil(), 0)
+       case reflect.Struct:
+               s.compareStruct(t, vx, vy)
+       case reflect.Slice, reflect.Array:
+               s.compareSlice(t, vx, vy)
+       case reflect.Map:
+               s.compareMap(t, vx, vy)
+       case reflect.Ptr:
+               s.comparePtr(t, vx, vy)
+       case reflect.Interface:
+               s.compareInterface(t, vx, vy)
+       default:
+               panic(fmt.Sprintf("%v kind not handled", t.Kind()))
+       }
+}
+
+func (s *state) tryOptions(t reflect.Type, vx, vy reflect.Value) bool {
+       // Evaluate all filters and apply the remaining options.
+       if opt := s.opts.filter(s, t, vx, vy); opt != nil {
+               opt.apply(s, vx, vy)
+               return true
+       }
+       return false
+}
+
+func (s *state) tryMethod(t reflect.Type, vx, vy reflect.Value) bool {
+       // Check if this type even has an Equal method.
+       m, ok := t.MethodByName("Equal")
+       if !ok || !function.IsType(m.Type, function.EqualAssignable) {
+               return false
+       }
+
+       eq := s.callTTBFunc(m.Func, vx, vy)
+       s.report(eq, reportByMethod)
+       return true
+}
+
+func (s *state) callTRFunc(f, v reflect.Value, step Transform) reflect.Value {
+       v = sanitizeValue(v, f.Type().In(0))
+       if !s.dynChecker.Next() {
+               return f.Call([]reflect.Value{v})[0]
+       }
+
+       // Run the function twice and ensure that we get the same results back.
+       // We run in goroutines so that the race detector (if enabled) can detect
+       // unsafe mutations to the input.
+       c := make(chan reflect.Value)
+       go detectRaces(c, f, v)
+       got := <-c
+       want := f.Call([]reflect.Value{v})[0]
+       if step.vx, step.vy = got, want; !s.statelessCompare(step).Equal() {
+               // To avoid false-positives with non-reflexive equality operations,
+               // we sanity check whether a value is equal to itself.
+               if step.vx, step.vy = want, want; !s.statelessCompare(step).Equal() {
+                       return want
+               }
+               panic(fmt.Sprintf("non-deterministic function detected: %s", function.NameOf(f)))
+       }
+       return want
+}
+
+func (s *state) callTTBFunc(f, x, y reflect.Value) bool {
+       x = sanitizeValue(x, f.Type().In(0))
+       y = sanitizeValue(y, f.Type().In(1))
+       if !s.dynChecker.Next() {
+               return f.Call([]reflect.Value{x, y})[0].Bool()
+       }
+
+       // Swapping the input arguments is sufficient to check that
+       // f is symmetric and deterministic.
+       // We run in goroutines so that the race detector (if enabled) can detect
+       // unsafe mutations to the input.
+       c := make(chan reflect.Value)
+       go detectRaces(c, f, y, x)
+       got := <-c
+       want := f.Call([]reflect.Value{x, y})[0].Bool()
+       if !got.IsValid() || got.Bool() != want {
+               panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", function.NameOf(f)))
+       }
+       return want
+}
+
+func detectRaces(c chan<- reflect.Value, f reflect.Value, vs ...reflect.Value) {
+       var ret reflect.Value
+       defer func() {
+               recover() // Ignore panics, let the other call to f panic instead
+               c <- ret
+       }()
+       ret = f.Call(vs)[0]
+}
+
+// sanitizeValue converts nil interfaces of type T to those of type R,
+// assuming that T is assignable to R.
+// Otherwise, it returns the input value as is.
+func sanitizeValue(v reflect.Value, t reflect.Type) reflect.Value {
+       // TODO(≥go1.10): Workaround for reflect bug (https://golang.org/issue/22143).
+       if !flags.AtLeastGo110 {
+               if v.Kind() == reflect.Interface && v.IsNil() && v.Type() != t {
+                       return reflect.New(t).Elem()
+               }
+       }
+       return v
+}
+
+func (s *state) compareStruct(t reflect.Type, vx, vy reflect.Value) {
+       var addr bool
+       var vax, vay reflect.Value // Addressable versions of vx and vy
+
+       var mayForce, mayForceInit bool
+       step := StructField{&structField{}}
+       for i := 0; i < t.NumField(); i++ {
+               step.typ = t.Field(i).Type
+               step.vx = vx.Field(i)
+               step.vy = vy.Field(i)
+               step.name = t.Field(i).Name
+               step.idx = i
+               step.unexported = !isExported(step.name)
+               if step.unexported {
+                       if step.name == "_" {
+                               continue
+                       }
+                       // Defer checking of unexported fields until later to give an
+                       // Ignore a chance to ignore the field.
+                       if !vax.IsValid() || !vay.IsValid() {
+                               // For retrieveUnexportedField to work, the parent struct must
+                               // be addressable. Create a new copy of the values if
+                               // necessary to make them addressable.
+                               addr = vx.CanAddr() || vy.CanAddr()
+                               vax = makeAddressable(vx)
+                               vay = makeAddressable(vy)
+                       }
+                       if !mayForceInit {
+                               for _, xf := range s.exporters {
+                                       mayForce = mayForce || xf(t)
+                               }
+                               mayForceInit = true
+                       }
+                       step.mayForce = mayForce
+                       step.paddr = addr
+                       step.pvx = vax
+                       step.pvy = vay
+                       step.field = t.Field(i)
+               }
+               s.compareAny(step)
+       }
+}
+
+func (s *state) compareSlice(t reflect.Type, vx, vy reflect.Value) {
+       isSlice := t.Kind() == reflect.Slice
+       if isSlice && (vx.IsNil() || vy.IsNil()) {
+               s.report(vx.IsNil() && vy.IsNil(), 0)
+               return
+       }
+
+       // NOTE: It is incorrect to call curPtrs.Push on the slice header pointer
+       // since slices represents a list of pointers, rather than a single pointer.
+       // The pointer checking logic must be handled on a per-element basis
+       // in compareAny.
+       //
+       // A slice header (see reflect.SliceHeader) in Go is a tuple of a starting
+       // pointer P, a length N, and a capacity C. Supposing each slice element has
+       // a memory size of M, then the slice is equivalent to the list of pointers:
+       //      [P+i*M for i in range(N)]
+       //
+       // For example, v[:0] and v[:1] are slices with the same starting pointer,
+       // but they are clearly different values. Using the slice pointer alone
+       // violates the assumption that equal pointers implies equal values.
+
+       step := SliceIndex{&sliceIndex{pathStep: pathStep{typ: t.Elem()}, isSlice: isSlice}}
+       withIndexes := func(ix, iy int) SliceIndex {
+               if ix >= 0 {
+                       step.vx, step.xkey = vx.Index(ix), ix
+               } else {
+                       step.vx, step.xkey = reflect.Value{}, -1
+               }
+               if iy >= 0 {
+                       step.vy, step.ykey = vy.Index(iy), iy
+               } else {
+                       step.vy, step.ykey = reflect.Value{}, -1
+               }
+               return step
+       }
+
+       // Ignore options are able to ignore missing elements in a slice.
+       // However, detecting these reliably requires an optimal differencing
+       // algorithm, for which diff.Difference is not.
+       //
+       // Instead, we first iterate through both slices to detect which elements
+       // would be ignored if standing alone. The index of non-discarded elements
+       // are stored in a separate slice, which diffing is then performed on.
+       var indexesX, indexesY []int
+       var ignoredX, ignoredY []bool
+       for ix := 0; ix < vx.Len(); ix++ {
+               ignored := s.statelessCompare(withIndexes(ix, -1)).NumDiff == 0
+               if !ignored {
+                       indexesX = append(indexesX, ix)
+               }
+               ignoredX = append(ignoredX, ignored)
+       }
+       for iy := 0; iy < vy.Len(); iy++ {
+               ignored := s.statelessCompare(withIndexes(-1, iy)).NumDiff == 0
+               if !ignored {
+                       indexesY = append(indexesY, iy)
+               }
+               ignoredY = append(ignoredY, ignored)
+       }
+
+       // Compute an edit-script for slices vx and vy (excluding ignored elements).
+       edits := diff.Difference(len(indexesX), len(indexesY), func(ix, iy int) diff.Result {
+               return s.statelessCompare(withIndexes(indexesX[ix], indexesY[iy]))
+       })
+
+       // Replay the ignore-scripts and the edit-script.
+       var ix, iy int
+       for ix < vx.Len() || iy < vy.Len() {
+               var e diff.EditType
+               switch {
+               case ix < len(ignoredX) && ignoredX[ix]:
+                       e = diff.UniqueX
+               case iy < len(ignoredY) && ignoredY[iy]:
+                       e = diff.UniqueY
+               default:
+                       e, edits = edits[0], edits[1:]
+               }
+               switch e {
+               case diff.UniqueX:
+                       s.compareAny(withIndexes(ix, -1))
+                       ix++
+               case diff.UniqueY:
+                       s.compareAny(withIndexes(-1, iy))
+                       iy++
+               default:
+                       s.compareAny(withIndexes(ix, iy))
+                       ix++
+                       iy++
+               }
+       }
+}
+
+func (s *state) compareMap(t reflect.Type, vx, vy reflect.Value) {
+       if vx.IsNil() || vy.IsNil() {
+               s.report(vx.IsNil() && vy.IsNil(), 0)
+               return
+       }
+
+       // Cycle-detection for maps.
+       if eq, visited := s.curPtrs.Push(vx, vy); visited {
+               s.report(eq, reportByCycle)
+               return
+       }
+       defer s.curPtrs.Pop(vx, vy)
+
+       // We combine and sort the two map keys so that we can perform the
+       // comparisons in a deterministic order.
+       step := MapIndex{&mapIndex{pathStep: pathStep{typ: t.Elem()}}}
+       for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) {
+               step.vx = vx.MapIndex(k)
+               step.vy = vy.MapIndex(k)
+               step.key = k
+               if !step.vx.IsValid() && !step.vy.IsValid() {
+                       // It is possible for both vx and vy to be invalid if the
+                       // key contained a NaN value in it.
+                       //
+                       // Even with the ability to retrieve NaN keys in Go 1.12,
+                       // there still isn't a sensible way to compare the values since
+                       // a NaN key may map to multiple unordered values.
+                       // The most reasonable way to compare NaNs would be to compare the
+                       // set of values. However, this is impossible to do efficiently
+                       // since set equality is provably an O(n^2) operation given only
+                       // an Equal function. If we had a Less function or Hash function,
+                       // this could be done in O(n*log(n)) or O(n), respectively.
+                       //
+                       // Rather than adding complex logic to deal with NaNs, make it
+                       // the user's responsibility to compare such obscure maps.
+                       const help = "consider providing a Comparer to compare the map"
+                       panic(fmt.Sprintf("%#v has map key with NaNs\n%s", s.curPath, help))
+               }
+               s.compareAny(step)
+       }
+}
+
+func (s *state) comparePtr(t reflect.Type, vx, vy reflect.Value) {
+       if vx.IsNil() || vy.IsNil() {
+               s.report(vx.IsNil() && vy.IsNil(), 0)
+               return
+       }
+
+       // Cycle-detection for pointers.
+       if eq, visited := s.curPtrs.Push(vx, vy); visited {
+               s.report(eq, reportByCycle)
+               return
+       }
+       defer s.curPtrs.Pop(vx, vy)
+
+       vx, vy = vx.Elem(), vy.Elem()
+       s.compareAny(Indirect{&indirect{pathStep{t.Elem(), vx, vy}}})
+}
+
+func (s *state) compareInterface(t reflect.Type, vx, vy reflect.Value) {
+       if vx.IsNil() || vy.IsNil() {
+               s.report(vx.IsNil() && vy.IsNil(), 0)
+               return
+       }
+       vx, vy = vx.Elem(), vy.Elem()
+       if vx.Type() != vy.Type() {
+               s.report(false, 0)
+               return
+       }
+       s.compareAny(TypeAssertion{&typeAssertion{pathStep{vx.Type(), vx, vy}}})
+}
+
+func (s *state) report(eq bool, rf resultFlags) {
+       if rf&reportByIgnore == 0 {
+               if eq {
+                       s.result.NumSame++
+                       rf |= reportEqual
+               } else {
+                       s.result.NumDiff++
+                       rf |= reportUnequal
+               }
+       }
+       for _, r := range s.reporters {
+               r.Report(Result{flags: rf})
+       }
+}
+
+// recChecker tracks the state needed to periodically perform checks that
+// user provided transformers are not stuck in an infinitely recursive cycle.
+type recChecker struct{ next int }
+
+// Check scans the Path for any recursive transformers and panics when any
+// recursive transformers are detected. Note that the presence of a
+// recursive Transformer does not necessarily imply an infinite cycle.
+// As such, this check only activates after some minimal number of path steps.
+func (rc *recChecker) Check(p Path) {
+       const minLen = 1 << 16
+       if rc.next == 0 {
+               rc.next = minLen
+       }
+       if len(p) < rc.next {
+               return
+       }
+       rc.next <<= 1
+
+       // Check whether the same transformer has appeared at least twice.
+       var ss []string
+       m := map[Option]int{}
+       for _, ps := range p {
+               if t, ok := ps.(Transform); ok {
+                       t := t.Option()
+                       if m[t] == 1 { // Transformer was used exactly once before
+                               tf := t.(*transformer).fnc.Type()
+                               ss = append(ss, fmt.Sprintf("%v: %v => %v", t, tf.In(0), tf.Out(0)))
+                       }
+                       m[t]++
+               }
+       }
+       if len(ss) > 0 {
+               const warning = "recursive set of Transformers detected"
+               const help = "consider using cmpopts.AcyclicTransformer"
+               set := strings.Join(ss, "\n\t")
+               panic(fmt.Sprintf("%s:\n\t%s\n%s", warning, set, help))
+       }
+}
+
+// dynChecker tracks the state needed to periodically perform checks that
+// user provided functions are symmetric and deterministic.
+// The zero value is safe for immediate use.
+type dynChecker struct{ curr, next int }
+
+// Next increments the state and reports whether a check should be performed.
+//
+// Checks occur every Nth function call, where N is a triangular number:
+//     0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 ...
+// See https://en.wikipedia.org/wiki/Triangular_number
+//
+// This sequence ensures that the cost of checks drops significantly as
+// the number of functions calls grows larger.
+func (dc *dynChecker) Next() bool {
+       ok := dc.curr == dc.next
+       if ok {
+               dc.curr = 0
+               dc.next++
+       }
+       dc.curr++
+       return ok
+}
+
+// makeAddressable returns a value that is always addressable.
+// It returns the input verbatim if it is already addressable,
+// otherwise it creates a new value and returns an addressable copy.
+func makeAddressable(v reflect.Value) reflect.Value {
+       if v.CanAddr() {
+               return v
+       }
+       vc := reflect.New(v.Type()).Elem()
+       vc.Set(v)
+       return vc
+}