.gitignore added
[dotfiles/.git] / .config / coc / extensions / coc-go-data / tools / pkg / mod / golang.org / x / tools@v0.1.0 / go / analysis / internal / checker / checker.go
diff --git a/.config/coc/extensions/coc-go-data/tools/pkg/mod/golang.org/x/tools@v0.1.0/go/analysis/internal/checker/checker.go b/.config/coc/extensions/coc-go-data/tools/pkg/mod/golang.org/x/tools@v0.1.0/go/analysis/internal/checker/checker.go
new file mode 100644 (file)
index 0000000..34f5b47
--- /dev/null
@@ -0,0 +1,907 @@
+// Copyright 2018 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package checker defines the implementation of the checker commands.
+// The same code drives the multi-analysis driver, the single-analysis
+// driver that is conventionally provided for convenience along with
+// each analysis package, and the test driver.
+package checker
+
+import (
+       "bytes"
+       "encoding/gob"
+       "flag"
+       "fmt"
+       "go/format"
+       "go/parser"
+       "go/token"
+       "go/types"
+       "io/ioutil"
+       "log"
+       "os"
+       "reflect"
+       "runtime"
+       "runtime/pprof"
+       "runtime/trace"
+       "sort"
+       "strings"
+       "sync"
+       "time"
+
+       "golang.org/x/tools/go/analysis"
+       "golang.org/x/tools/go/analysis/internal/analysisflags"
+       "golang.org/x/tools/go/packages"
+       "golang.org/x/tools/internal/analysisinternal"
+       "golang.org/x/tools/internal/span"
+)
+
+var (
+       // Debug is a set of single-letter flags:
+       //
+       //      f       show [f]acts as they are created
+       //      p       disable [p]arallel execution of analyzers
+       //      s       do additional [s]anity checks on fact types and serialization
+       //      t       show [t]iming info (NB: use 'p' flag to avoid GC/scheduler noise)
+       //      v       show [v]erbose logging
+       //
+       Debug = ""
+
+       // Log files for optional performance tracing.
+       CPUProfile, MemProfile, Trace string
+
+       // Fix determines whether to apply all suggested fixes.
+       Fix bool
+)
+
+// RegisterFlags registers command-line flags used by the analysis driver.
+func RegisterFlags() {
+       // When adding flags here, remember to update
+       // the list of suppressed flags in analysisflags.
+
+       flag.StringVar(&Debug, "debug", Debug, `debug flags, any subset of "fpstv"`)
+
+       flag.StringVar(&CPUProfile, "cpuprofile", "", "write CPU profile to this file")
+       flag.StringVar(&MemProfile, "memprofile", "", "write memory profile to this file")
+       flag.StringVar(&Trace, "trace", "", "write trace log to this file")
+
+       flag.BoolVar(&Fix, "fix", false, "apply all suggested fixes")
+}
+
+// Run loads the packages specified by args using go/packages,
+// then applies the specified analyzers to them.
+// Analysis flags must already have been set.
+// It provides most of the logic for the main functions of both the
+// singlechecker and the multi-analysis commands.
+// It returns the appropriate exit code.
+func Run(args []string, analyzers []*analysis.Analyzer) (exitcode int) {
+       if CPUProfile != "" {
+               f, err := os.Create(CPUProfile)
+               if err != nil {
+                       log.Fatal(err)
+               }
+               if err := pprof.StartCPUProfile(f); err != nil {
+                       log.Fatal(err)
+               }
+               // NB: profile won't be written in case of error.
+               defer pprof.StopCPUProfile()
+       }
+
+       if Trace != "" {
+               f, err := os.Create(Trace)
+               if err != nil {
+                       log.Fatal(err)
+               }
+               if err := trace.Start(f); err != nil {
+                       log.Fatal(err)
+               }
+               // NB: trace log won't be written in case of error.
+               defer func() {
+                       trace.Stop()
+                       log.Printf("To view the trace, run:\n$ go tool trace view %s", Trace)
+               }()
+       }
+
+       if MemProfile != "" {
+               f, err := os.Create(MemProfile)
+               if err != nil {
+                       log.Fatal(err)
+               }
+               // NB: memprofile won't be written in case of error.
+               defer func() {
+                       runtime.GC() // get up-to-date statistics
+                       if err := pprof.WriteHeapProfile(f); err != nil {
+                               log.Fatalf("Writing memory profile: %v", err)
+                       }
+                       f.Close()
+               }()
+       }
+
+       // Load the packages.
+       if dbg('v') {
+               log.SetPrefix("")
+               log.SetFlags(log.Lmicroseconds) // display timing
+               log.Printf("load %s", args)
+       }
+
+       // Optimization: if the selected analyzers don't produce/consume
+       // facts, we need source only for the initial packages.
+       allSyntax := needFacts(analyzers)
+       initial, err := load(args, allSyntax)
+       if err != nil {
+               log.Print(err)
+               return 1 // load errors
+       }
+
+       // Print the results.
+       roots := analyze(initial, analyzers)
+
+       if Fix {
+               applyFixes(roots)
+       }
+
+       return printDiagnostics(roots)
+}
+
+// load loads the initial packages.
+func load(patterns []string, allSyntax bool) ([]*packages.Package, error) {
+       mode := packages.LoadSyntax
+       if allSyntax {
+               mode = packages.LoadAllSyntax
+       }
+       conf := packages.Config{
+               Mode:  mode,
+               Tests: true,
+       }
+       initial, err := packages.Load(&conf, patterns...)
+       if err == nil {
+               if n := packages.PrintErrors(initial); n > 1 {
+                       err = fmt.Errorf("%d errors during loading", n)
+               } else if n == 1 {
+                       err = fmt.Errorf("error during loading")
+               } else if len(initial) == 0 {
+                       err = fmt.Errorf("%s matched no packages", strings.Join(patterns, " "))
+               }
+       }
+
+       return initial, err
+}
+
+// TestAnalyzer applies an analysis to a set of packages (and their
+// dependencies if necessary) and returns the results.
+//
+// Facts about pkg are returned in a map keyed by object; package facts
+// have a nil key.
+//
+// This entry point is used only by analysistest.
+func TestAnalyzer(a *analysis.Analyzer, pkgs []*packages.Package) []*TestAnalyzerResult {
+       var results []*TestAnalyzerResult
+       for _, act := range analyze(pkgs, []*analysis.Analyzer{a}) {
+               facts := make(map[types.Object][]analysis.Fact)
+               for key, fact := range act.objectFacts {
+                       if key.obj.Pkg() == act.pass.Pkg {
+                               facts[key.obj] = append(facts[key.obj], fact)
+                       }
+               }
+               for key, fact := range act.packageFacts {
+                       if key.pkg == act.pass.Pkg {
+                               facts[nil] = append(facts[nil], fact)
+                       }
+               }
+
+               results = append(results, &TestAnalyzerResult{act.pass, act.diagnostics, facts, act.result, act.err})
+       }
+       return results
+}
+
+type TestAnalyzerResult struct {
+       Pass        *analysis.Pass
+       Diagnostics []analysis.Diagnostic
+       Facts       map[types.Object][]analysis.Fact
+       Result      interface{}
+       Err         error
+}
+
+func analyze(pkgs []*packages.Package, analyzers []*analysis.Analyzer) []*action {
+       // Construct the action graph.
+       if dbg('v') {
+               log.Printf("building graph of analysis passes")
+       }
+
+       // Each graph node (action) is one unit of analysis.
+       // Edges express package-to-package (vertical) dependencies,
+       // and analysis-to-analysis (horizontal) dependencies.
+       type key struct {
+               *analysis.Analyzer
+               *packages.Package
+       }
+       actions := make(map[key]*action)
+
+       var mkAction func(a *analysis.Analyzer, pkg *packages.Package) *action
+       mkAction = func(a *analysis.Analyzer, pkg *packages.Package) *action {
+               k := key{a, pkg}
+               act, ok := actions[k]
+               if !ok {
+                       act = &action{a: a, pkg: pkg}
+
+                       // Add a dependency on each required analyzers.
+                       for _, req := range a.Requires {
+                               act.deps = append(act.deps, mkAction(req, pkg))
+                       }
+
+                       // An analysis that consumes/produces facts
+                       // must run on the package's dependencies too.
+                       if len(a.FactTypes) > 0 {
+                               paths := make([]string, 0, len(pkg.Imports))
+                               for path := range pkg.Imports {
+                                       paths = append(paths, path)
+                               }
+                               sort.Strings(paths) // for determinism
+                               for _, path := range paths {
+                                       dep := mkAction(a, pkg.Imports[path])
+                                       act.deps = append(act.deps, dep)
+                               }
+                       }
+
+                       actions[k] = act
+               }
+               return act
+       }
+
+       // Build nodes for initial packages.
+       var roots []*action
+       for _, a := range analyzers {
+               for _, pkg := range pkgs {
+                       root := mkAction(a, pkg)
+                       root.isroot = true
+                       roots = append(roots, root)
+               }
+       }
+
+       // Execute the graph in parallel.
+       execAll(roots)
+
+       return roots
+}
+
+func applyFixes(roots []*action) {
+       visited := make(map[*action]bool)
+       var apply func(*action) error
+       var visitAll func(actions []*action) error
+       visitAll = func(actions []*action) error {
+               for _, act := range actions {
+                       if !visited[act] {
+                               visited[act] = true
+                               visitAll(act.deps)
+                               if err := apply(act); err != nil {
+                                       return err
+                               }
+                       }
+               }
+               return nil
+       }
+
+       // TODO(matloob): Is this tree business too complicated? (After all this is Go!)
+       // Just create a set (map) of edits, sort by pos and call it a day?
+       type offsetedit struct {
+               start, end int
+               newText    []byte
+       } // TextEdit using byteOffsets instead of pos
+       type node struct {
+               edit        offsetedit
+               left, right *node
+       }
+
+       var insert func(tree **node, edit offsetedit) error
+       insert = func(treeptr **node, edit offsetedit) error {
+               if *treeptr == nil {
+                       *treeptr = &node{edit, nil, nil}
+                       return nil
+               }
+               tree := *treeptr
+               if edit.end <= tree.edit.start {
+                       return insert(&tree.left, edit)
+               } else if edit.start >= tree.edit.end {
+                       return insert(&tree.right, edit)
+               }
+
+               // Overlapping text edit.
+               return fmt.Errorf("analyses applying overlapping text edits affecting pos range (%v, %v) and (%v, %v)",
+                       edit.start, edit.end, tree.edit.start, tree.edit.end)
+
+       }
+
+       editsForFile := make(map[*token.File]*node)
+
+       apply = func(act *action) error {
+               for _, diag := range act.diagnostics {
+                       for _, sf := range diag.SuggestedFixes {
+                               for _, edit := range sf.TextEdits {
+                                       // Validate the edit.
+                                       if edit.Pos > edit.End {
+                                               return fmt.Errorf(
+                                                       "diagnostic for analysis %v contains Suggested Fix with malformed edit: pos (%v) > end (%v)",
+                                                       act.a.Name, edit.Pos, edit.End)
+                                       }
+                                       file, endfile := act.pkg.Fset.File(edit.Pos), act.pkg.Fset.File(edit.End)
+                                       if file == nil || endfile == nil || file != endfile {
+                                               return (fmt.Errorf(
+                                                       "diagnostic for analysis %v contains Suggested Fix with malformed spanning files %v and %v",
+                                                       act.a.Name, file.Name(), endfile.Name()))
+                                       }
+                                       start, end := file.Offset(edit.Pos), file.Offset(edit.End)
+
+                                       // TODO(matloob): Validate that edits do not affect other packages.
+                                       root := editsForFile[file]
+                                       if err := insert(&root, offsetedit{start, end, edit.NewText}); err != nil {
+                                               return err
+                                       }
+                                       editsForFile[file] = root // In case the root changed
+                               }
+                       }
+               }
+               return nil
+       }
+
+       visitAll(roots)
+
+       fset := token.NewFileSet() // Shared by parse calls below
+       // Now we've got a set of valid edits for each file. Get the new file contents.
+       for f, tree := range editsForFile {
+               contents, err := ioutil.ReadFile(f.Name())
+               if err != nil {
+                       log.Fatal(err)
+               }
+
+               cur := 0 // current position in the file
+
+               var out bytes.Buffer
+
+               var recurse func(*node)
+               recurse = func(node *node) {
+                       if node.left != nil {
+                               recurse(node.left)
+                       }
+
+                       edit := node.edit
+                       if edit.start > cur {
+                               out.Write(contents[cur:edit.start])
+                               out.Write(edit.newText)
+                       }
+                       cur = edit.end
+
+                       if node.right != nil {
+                               recurse(node.right)
+                       }
+               }
+               recurse(tree)
+               // Write out the rest of the file.
+               if cur < len(contents) {
+                       out.Write(contents[cur:])
+               }
+
+               // Try to format the file.
+               ff, err := parser.ParseFile(fset, f.Name(), out.Bytes(), parser.ParseComments)
+               if err == nil {
+                       var buf bytes.Buffer
+                       if err = format.Node(&buf, fset, ff); err == nil {
+                               out = buf
+                       }
+               }
+
+               ioutil.WriteFile(f.Name(), out.Bytes(), 0644)
+       }
+}
+
+// printDiagnostics prints the diagnostics for the root packages in either
+// plain text or JSON format. JSON format also includes errors for any
+// dependencies.
+//
+// It returns the exitcode: in plain mode, 0 for success, 1 for analysis
+// errors, and 3 for diagnostics. We avoid 2 since the flag package uses
+// it. JSON mode always succeeds at printing errors and diagnostics in a
+// structured form to stdout.
+func printDiagnostics(roots []*action) (exitcode int) {
+       // Print the output.
+       //
+       // Print diagnostics only for root packages,
+       // but errors for all packages.
+       printed := make(map[*action]bool)
+       var print func(*action)
+       var visitAll func(actions []*action)
+       visitAll = func(actions []*action) {
+               for _, act := range actions {
+                       if !printed[act] {
+                               printed[act] = true
+                               visitAll(act.deps)
+                               print(act)
+                       }
+               }
+       }
+
+       if analysisflags.JSON {
+               // JSON output
+               tree := make(analysisflags.JSONTree)
+               print = func(act *action) {
+                       var diags []analysis.Diagnostic
+                       if act.isroot {
+                               diags = act.diagnostics
+                       }
+                       tree.Add(act.pkg.Fset, act.pkg.ID, act.a.Name, diags, act.err)
+               }
+               visitAll(roots)
+               tree.Print()
+       } else {
+               // plain text output
+
+               // De-duplicate diagnostics by position (not token.Pos) to
+               // avoid double-reporting in source files that belong to
+               // multiple packages, such as foo and foo.test.
+               type key struct {
+                       pos token.Position
+                       end token.Position
+                       *analysis.Analyzer
+                       message string
+               }
+               seen := make(map[key]bool)
+
+               print = func(act *action) {
+                       if act.err != nil {
+                               fmt.Fprintf(os.Stderr, "%s: %v\n", act.a.Name, act.err)
+                               exitcode = 1 // analysis failed, at least partially
+                               return
+                       }
+                       if act.isroot {
+                               for _, diag := range act.diagnostics {
+                                       // We don't display a.Name/f.Category
+                                       // as most users don't care.
+
+                                       posn := act.pkg.Fset.Position(diag.Pos)
+                                       end := act.pkg.Fset.Position(diag.End)
+                                       k := key{posn, end, act.a, diag.Message}
+                                       if seen[k] {
+                                               continue // duplicate
+                                       }
+                                       seen[k] = true
+
+                                       analysisflags.PrintPlain(act.pkg.Fset, diag)
+                               }
+                       }
+               }
+               visitAll(roots)
+
+               if exitcode == 0 && len(seen) > 0 {
+                       exitcode = 3 // successfully produced diagnostics
+               }
+       }
+
+       // Print timing info.
+       if dbg('t') {
+               if !dbg('p') {
+                       log.Println("Warning: times are mostly GC/scheduler noise; use -debug=tp to disable parallelism")
+               }
+               var all []*action
+               var total time.Duration
+               for act := range printed {
+                       all = append(all, act)
+                       total += act.duration
+               }
+               sort.Slice(all, func(i, j int) bool {
+                       return all[i].duration > all[j].duration
+               })
+
+               // Print actions accounting for 90% of the total.
+               var sum time.Duration
+               for _, act := range all {
+                       fmt.Fprintf(os.Stderr, "%s\t%s\n", act.duration, act)
+                       sum += act.duration
+                       if sum >= total*9/10 {
+                               break
+                       }
+               }
+       }
+
+       return exitcode
+}
+
+// needFacts reports whether any analysis required by the specified set
+// needs facts.  If so, we must load the entire program from source.
+func needFacts(analyzers []*analysis.Analyzer) bool {
+       seen := make(map[*analysis.Analyzer]bool)
+       var q []*analysis.Analyzer // for BFS
+       q = append(q, analyzers...)
+       for len(q) > 0 {
+               a := q[0]
+               q = q[1:]
+               if !seen[a] {
+                       seen[a] = true
+                       if len(a.FactTypes) > 0 {
+                               return true
+                       }
+                       q = append(q, a.Requires...)
+               }
+       }
+       return false
+}
+
+// An action represents one unit of analysis work: the application of
+// one analysis to one package. Actions form a DAG, both within a
+// package (as different analyzers are applied, either in sequence or
+// parallel), and across packages (as dependencies are analyzed).
+type action struct {
+       once         sync.Once
+       a            *analysis.Analyzer
+       pkg          *packages.Package
+       pass         *analysis.Pass
+       isroot       bool
+       deps         []*action
+       objectFacts  map[objectFactKey]analysis.Fact
+       packageFacts map[packageFactKey]analysis.Fact
+       inputs       map[*analysis.Analyzer]interface{}
+       result       interface{}
+       diagnostics  []analysis.Diagnostic
+       err          error
+       duration     time.Duration
+}
+
+type objectFactKey struct {
+       obj types.Object
+       typ reflect.Type
+}
+
+type packageFactKey struct {
+       pkg *types.Package
+       typ reflect.Type
+}
+
+func (act *action) String() string {
+       return fmt.Sprintf("%s@%s", act.a, act.pkg)
+}
+
+func execAll(actions []*action) {
+       sequential := dbg('p')
+       var wg sync.WaitGroup
+       for _, act := range actions {
+               wg.Add(1)
+               work := func(act *action) {
+                       act.exec()
+                       wg.Done()
+               }
+               if sequential {
+                       work(act)
+               } else {
+                       go work(act)
+               }
+       }
+       wg.Wait()
+}
+
+func (act *action) exec() { act.once.Do(act.execOnce) }
+
+func (act *action) execOnce() {
+       // Analyze dependencies.
+       execAll(act.deps)
+
+       // TODO(adonovan): uncomment this during profiling.
+       // It won't build pre-go1.11 but conditional compilation
+       // using build tags isn't warranted.
+       //
+       // ctx, task := trace.NewTask(context.Background(), "exec")
+       // trace.Log(ctx, "pass", act.String())
+       // defer task.End()
+
+       // Record time spent in this node but not its dependencies.
+       // In parallel mode, due to GC/scheduler contention, the
+       // time is 5x higher than in sequential mode, even with a
+       // semaphore limiting the number of threads here.
+       // So use -debug=tp.
+       if dbg('t') {
+               t0 := time.Now()
+               defer func() { act.duration = time.Since(t0) }()
+       }
+
+       // Report an error if any dependency failed.
+       var failed []string
+       for _, dep := range act.deps {
+               if dep.err != nil {
+                       failed = append(failed, dep.String())
+               }
+       }
+       if failed != nil {
+               sort.Strings(failed)
+               act.err = fmt.Errorf("failed prerequisites: %s", strings.Join(failed, ", "))
+               return
+       }
+
+       // Plumb the output values of the dependencies
+       // into the inputs of this action.  Also facts.
+       inputs := make(map[*analysis.Analyzer]interface{})
+       act.objectFacts = make(map[objectFactKey]analysis.Fact)
+       act.packageFacts = make(map[packageFactKey]analysis.Fact)
+       for _, dep := range act.deps {
+               if dep.pkg == act.pkg {
+                       // Same package, different analysis (horizontal edge):
+                       // in-memory outputs of prerequisite analyzers
+                       // become inputs to this analysis pass.
+                       inputs[dep.a] = dep.result
+
+               } else if dep.a == act.a { // (always true)
+                       // Same analysis, different package (vertical edge):
+                       // serialized facts produced by prerequisite analysis
+                       // become available to this analysis pass.
+                       inheritFacts(act, dep)
+               }
+       }
+
+       // Run the analysis.
+       pass := &analysis.Pass{
+               Analyzer:          act.a,
+               Fset:              act.pkg.Fset,
+               Files:             act.pkg.Syntax,
+               OtherFiles:        act.pkg.OtherFiles,
+               IgnoredFiles:      act.pkg.IgnoredFiles,
+               Pkg:               act.pkg.Types,
+               TypesInfo:         act.pkg.TypesInfo,
+               TypesSizes:        act.pkg.TypesSizes,
+               ResultOf:          inputs,
+               Report:            func(d analysis.Diagnostic) { act.diagnostics = append(act.diagnostics, d) },
+               ImportObjectFact:  act.importObjectFact,
+               ExportObjectFact:  act.exportObjectFact,
+               ImportPackageFact: act.importPackageFact,
+               ExportPackageFact: act.exportPackageFact,
+               AllObjectFacts:    act.allObjectFacts,
+               AllPackageFacts:   act.allPackageFacts,
+       }
+       act.pass = pass
+
+       var errors []types.Error
+       // Get any type errors that are attributed to the pkg.
+       // This is necessary to test analyzers that provide
+       // suggested fixes for compiler/type errors.
+       for _, err := range act.pkg.Errors {
+               if err.Kind != packages.TypeError {
+                       continue
+               }
+               // err.Pos is a string of form: "file:line:col" or "file:line" or "" or "-"
+               spn := span.Parse(err.Pos)
+               // Extract the token positions from the error string.
+               line, col, offset := spn.Start().Line(), spn.Start().Column(), -1
+               act.pkg.Fset.Iterate(func(f *token.File) bool {
+                       if f.Name() != spn.URI().Filename() {
+                               return true
+                       }
+                       offset = int(f.LineStart(line)) + col - 1
+                       return false
+               })
+               if offset == -1 {
+                       continue
+               }
+               errors = append(errors, types.Error{
+                       Fset: act.pkg.Fset,
+                       Msg:  err.Msg,
+                       Pos:  token.Pos(offset),
+               })
+       }
+       analysisinternal.SetTypeErrors(pass, errors)
+
+       var err error
+       if act.pkg.IllTyped && !pass.Analyzer.RunDespiteErrors {
+               err = fmt.Errorf("analysis skipped due to errors in package")
+       } else {
+               act.result, err = pass.Analyzer.Run(pass)
+               if err == nil {
+                       if got, want := reflect.TypeOf(act.result), pass.Analyzer.ResultType; got != want {
+                               err = fmt.Errorf(
+                                       "internal error: on package %s, analyzer %s returned a result of type %v, but declared ResultType %v",
+                                       pass.Pkg.Path(), pass.Analyzer, got, want)
+                       }
+               }
+       }
+       act.err = err
+
+       // disallow calls after Run
+       pass.ExportObjectFact = nil
+       pass.ExportPackageFact = nil
+}
+
+// inheritFacts populates act.facts with
+// those it obtains from its dependency, dep.
+func inheritFacts(act, dep *action) {
+       serialize := dbg('s')
+
+       for key, fact := range dep.objectFacts {
+               // Filter out facts related to objects
+               // that are irrelevant downstream
+               // (equivalently: not in the compiler export data).
+               if !exportedFrom(key.obj, dep.pkg.Types) {
+                       if false {
+                               log.Printf("%v: discarding %T fact from %s for %s: %s", act, fact, dep, key.obj, fact)
+                       }
+                       continue
+               }
+
+               // Optionally serialize/deserialize fact
+               // to verify that it works across address spaces.
+               if serialize {
+                       encodedFact, err := codeFact(fact)
+                       if err != nil {
+                               log.Panicf("internal error: encoding of %T fact failed in %v", fact, act)
+                       }
+                       fact = encodedFact
+               }
+
+               if false {
+                       log.Printf("%v: inherited %T fact for %s: %s", act, fact, key.obj, fact)
+               }
+               act.objectFacts[key] = fact
+       }
+
+       for key, fact := range dep.packageFacts {
+               // TODO: filter out facts that belong to
+               // packages not mentioned in the export data
+               // to prevent side channels.
+
+               // Optionally serialize/deserialize fact
+               // to verify that it works across address spaces
+               // and is deterministic.
+               if serialize {
+                       encodedFact, err := codeFact(fact)
+                       if err != nil {
+                               log.Panicf("internal error: encoding of %T fact failed in %v", fact, act)
+                       }
+                       fact = encodedFact
+               }
+
+               if false {
+                       log.Printf("%v: inherited %T fact for %s: %s", act, fact, key.pkg.Path(), fact)
+               }
+               act.packageFacts[key] = fact
+       }
+}
+
+// codeFact encodes then decodes a fact,
+// just to exercise that logic.
+func codeFact(fact analysis.Fact) (analysis.Fact, error) {
+       // We encode facts one at a time.
+       // A real modular driver would emit all facts
+       // into one encoder to improve gob efficiency.
+       var buf bytes.Buffer
+       if err := gob.NewEncoder(&buf).Encode(fact); err != nil {
+               return nil, err
+       }
+
+       // Encode it twice and assert that we get the same bits.
+       // This helps detect nondeterministic Gob encoding (e.g. of maps).
+       var buf2 bytes.Buffer
+       if err := gob.NewEncoder(&buf2).Encode(fact); err != nil {
+               return nil, err
+       }
+       if !bytes.Equal(buf.Bytes(), buf2.Bytes()) {
+               return nil, fmt.Errorf("encoding of %T fact is nondeterministic", fact)
+       }
+
+       new := reflect.New(reflect.TypeOf(fact).Elem()).Interface().(analysis.Fact)
+       if err := gob.NewDecoder(&buf).Decode(new); err != nil {
+               return nil, err
+       }
+       return new, nil
+}
+
+// exportedFrom reports whether obj may be visible to a package that imports pkg.
+// This includes not just the exported members of pkg, but also unexported
+// constants, types, fields, and methods, perhaps belonging to oether packages,
+// that find there way into the API.
+// This is an overapproximation of the more accurate approach used by
+// gc export data, which walks the type graph, but it's much simpler.
+//
+// TODO(adonovan): do more accurate filtering by walking the type graph.
+func exportedFrom(obj types.Object, pkg *types.Package) bool {
+       switch obj := obj.(type) {
+       case *types.Func:
+               return obj.Exported() && obj.Pkg() == pkg ||
+                       obj.Type().(*types.Signature).Recv() != nil
+       case *types.Var:
+               if obj.IsField() {
+                       return true
+               }
+               // we can't filter more aggressively than this because we need
+               // to consider function parameters exported, but have no way
+               // of telling apart function parameters from local variables.
+               return obj.Pkg() == pkg
+       case *types.TypeName, *types.Const:
+               return true
+       }
+       return false // Nil, Builtin, Label, or PkgName
+}
+
+// importObjectFact implements Pass.ImportObjectFact.
+// Given a non-nil pointer ptr of type *T, where *T satisfies Fact,
+// importObjectFact copies the fact value to *ptr.
+func (act *action) importObjectFact(obj types.Object, ptr analysis.Fact) bool {
+       if obj == nil {
+               panic("nil object")
+       }
+       key := objectFactKey{obj, factType(ptr)}
+       if v, ok := act.objectFacts[key]; ok {
+               reflect.ValueOf(ptr).Elem().Set(reflect.ValueOf(v).Elem())
+               return true
+       }
+       return false
+}
+
+// exportObjectFact implements Pass.ExportObjectFact.
+func (act *action) exportObjectFact(obj types.Object, fact analysis.Fact) {
+       if act.pass.ExportObjectFact == nil {
+               log.Panicf("%s: Pass.ExportObjectFact(%s, %T) called after Run", act, obj, fact)
+       }
+
+       if obj.Pkg() != act.pkg.Types {
+               log.Panicf("internal error: in analysis %s of package %s: Fact.Set(%s, %T): can't set facts on objects belonging another package",
+                       act.a, act.pkg, obj, fact)
+       }
+
+       key := objectFactKey{obj, factType(fact)}
+       act.objectFacts[key] = fact // clobber any existing entry
+       if dbg('f') {
+               objstr := types.ObjectString(obj, (*types.Package).Name)
+               fmt.Fprintf(os.Stderr, "%s: object %s has fact %s\n",
+                       act.pkg.Fset.Position(obj.Pos()), objstr, fact)
+       }
+}
+
+// allObjectFacts implements Pass.AllObjectFacts.
+func (act *action) allObjectFacts() []analysis.ObjectFact {
+       facts := make([]analysis.ObjectFact, 0, len(act.objectFacts))
+       for k := range act.objectFacts {
+               facts = append(facts, analysis.ObjectFact{k.obj, act.objectFacts[k]})
+       }
+       return facts
+}
+
+// importPackageFact implements Pass.ImportPackageFact.
+// Given a non-nil pointer ptr of type *T, where *T satisfies Fact,
+// fact copies the fact value to *ptr.
+func (act *action) importPackageFact(pkg *types.Package, ptr analysis.Fact) bool {
+       if pkg == nil {
+               panic("nil package")
+       }
+       key := packageFactKey{pkg, factType(ptr)}
+       if v, ok := act.packageFacts[key]; ok {
+               reflect.ValueOf(ptr).Elem().Set(reflect.ValueOf(v).Elem())
+               return true
+       }
+       return false
+}
+
+// exportPackageFact implements Pass.ExportPackageFact.
+func (act *action) exportPackageFact(fact analysis.Fact) {
+       if act.pass.ExportPackageFact == nil {
+               log.Panicf("%s: Pass.ExportPackageFact(%T) called after Run", act, fact)
+       }
+
+       key := packageFactKey{act.pass.Pkg, factType(fact)}
+       act.packageFacts[key] = fact // clobber any existing entry
+       if dbg('f') {
+               fmt.Fprintf(os.Stderr, "%s: package %s has fact %s\n",
+                       act.pkg.Fset.Position(act.pass.Files[0].Pos()), act.pass.Pkg.Path(), fact)
+       }
+}
+
+func factType(fact analysis.Fact) reflect.Type {
+       t := reflect.TypeOf(fact)
+       if t.Kind() != reflect.Ptr {
+               log.Fatalf("invalid Fact type: got %T, want pointer", t)
+       }
+       return t
+}
+
+// allObjectFacts implements Pass.AllObjectFacts.
+func (act *action) allPackageFacts() []analysis.PackageFact {
+       facts := make([]analysis.PackageFact, 0, len(act.packageFacts))
+       for k := range act.packageFacts {
+               facts = append(facts, analysis.PackageFact{k.pkg, act.packageFacts[k]})
+       }
+       return facts
+}
+
+func dbg(b byte) bool { return strings.IndexByte(Debug, b) >= 0 }