Giant blob of minor changes
[dotfiles/.git] / .config / coc / extensions / coc-go-data / tools / pkg / mod / golang.org / x / tools@v0.0.0-20201028153306-37f0764111ff / go / ssa / ssa.go
diff --git a/.config/coc/extensions/coc-go-data/tools/pkg/mod/golang.org/x/tools@v0.0.0-20201028153306-37f0764111ff/go/ssa/ssa.go b/.config/coc/extensions/coc-go-data/tools/pkg/mod/golang.org/x/tools@v0.0.0-20201028153306-37f0764111ff/go/ssa/ssa.go
new file mode 100644 (file)
index 0000000..4dfdafd
--- /dev/null
@@ -0,0 +1,1697 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+// This package defines a high-level intermediate representation for
+// Go programs using static single-assignment (SSA) form.
+
+import (
+       "fmt"
+       "go/ast"
+       "go/constant"
+       "go/token"
+       "go/types"
+       "sync"
+
+       "golang.org/x/tools/go/types/typeutil"
+)
+
+// A Program is a partial or complete Go program converted to SSA form.
+type Program struct {
+       Fset       *token.FileSet              // position information for the files of this Program
+       imported   map[string]*Package         // all importable Packages, keyed by import path
+       packages   map[*types.Package]*Package // all loaded Packages, keyed by object
+       mode       BuilderMode                 // set of mode bits for SSA construction
+       MethodSets typeutil.MethodSetCache     // cache of type-checker's method-sets
+
+       methodsMu    sync.Mutex                 // guards the following maps:
+       methodSets   typeutil.Map               // maps type to its concrete methodSet
+       runtimeTypes typeutil.Map               // types for which rtypes are needed
+       canon        typeutil.Map               // type canonicalization map
+       bounds       map[*types.Func]*Function  // bounds for curried x.Method closures
+       thunks       map[selectionKey]*Function // thunks for T.Method expressions
+}
+
+// A Package is a single analyzed Go package containing Members for
+// all package-level functions, variables, constants and types it
+// declares.  These may be accessed directly via Members, or via the
+// type-specific accessor methods Func, Type, Var and Const.
+//
+// Members also contains entries for "init" (the synthetic package
+// initializer) and "init#%d", the nth declared init function,
+// and unspecified other things too.
+//
+type Package struct {
+       Prog    *Program               // the owning program
+       Pkg     *types.Package         // the corresponding go/types.Package
+       Members map[string]Member      // all package members keyed by name (incl. init and init#%d)
+       values  map[types.Object]Value // package members (incl. types and methods), keyed by object
+       init    *Function              // Func("init"); the package's init function
+       debug   bool                   // include full debug info in this package
+
+       // The following fields are set transiently, then cleared
+       // after building.
+       buildOnce sync.Once   // ensures package building occurs once
+       ninit     int32       // number of init functions
+       info      *types.Info // package type information
+       files     []*ast.File // package ASTs
+}
+
+// A Member is a member of a Go package, implemented by *NamedConst,
+// *Global, *Function, or *Type; they are created by package-level
+// const, var, func and type declarations respectively.
+//
+type Member interface {
+       Name() string                    // declared name of the package member
+       String() string                  // package-qualified name of the package member
+       RelString(*types.Package) string // like String, but relative refs are unqualified
+       Object() types.Object            // typechecker's object for this member, if any
+       Pos() token.Pos                  // position of member's declaration, if known
+       Type() types.Type                // type of the package member
+       Token() token.Token              // token.{VAR,FUNC,CONST,TYPE}
+       Package() *Package               // the containing package
+}
+
+// A Type is a Member of a Package representing a package-level named type.
+type Type struct {
+       object *types.TypeName
+       pkg    *Package
+}
+
+// A NamedConst is a Member of a Package representing a package-level
+// named constant.
+//
+// Pos() returns the position of the declaring ast.ValueSpec.Names[*]
+// identifier.
+//
+// NB: a NamedConst is not a Value; it contains a constant Value, which
+// it augments with the name and position of its 'const' declaration.
+//
+type NamedConst struct {
+       object *types.Const
+       Value  *Const
+       pkg    *Package
+}
+
+// A Value is an SSA value that can be referenced by an instruction.
+type Value interface {
+       // Name returns the name of this value, and determines how
+       // this Value appears when used as an operand of an
+       // Instruction.
+       //
+       // This is the same as the source name for Parameters,
+       // Builtins, Functions, FreeVars, Globals.
+       // For constants, it is a representation of the constant's value
+       // and type.  For all other Values this is the name of the
+       // virtual register defined by the instruction.
+       //
+       // The name of an SSA Value is not semantically significant,
+       // and may not even be unique within a function.
+       Name() string
+
+       // If this value is an Instruction, String returns its
+       // disassembled form; otherwise it returns unspecified
+       // human-readable information about the Value, such as its
+       // kind, name and type.
+       String() string
+
+       // Type returns the type of this value.  Many instructions
+       // (e.g. IndexAddr) change their behaviour depending on the
+       // types of their operands.
+       Type() types.Type
+
+       // Parent returns the function to which this Value belongs.
+       // It returns nil for named Functions, Builtin, Const and Global.
+       Parent() *Function
+
+       // Referrers returns the list of instructions that have this
+       // value as one of their operands; it may contain duplicates
+       // if an instruction has a repeated operand.
+       //
+       // Referrers actually returns a pointer through which the
+       // caller may perform mutations to the object's state.
+       //
+       // Referrers is currently only defined if Parent()!=nil,
+       // i.e. for the function-local values FreeVar, Parameter,
+       // Functions (iff anonymous) and all value-defining instructions.
+       // It returns nil for named Functions, Builtin, Const and Global.
+       //
+       // Instruction.Operands contains the inverse of this relation.
+       Referrers() *[]Instruction
+
+       // Pos returns the location of the AST token most closely
+       // associated with the operation that gave rise to this value,
+       // or token.NoPos if it was not explicit in the source.
+       //
+       // For each ast.Node type, a particular token is designated as
+       // the closest location for the expression, e.g. the Lparen
+       // for an *ast.CallExpr.  This permits a compact but
+       // approximate mapping from Values to source positions for use
+       // in diagnostic messages, for example.
+       //
+       // (Do not use this position to determine which Value
+       // corresponds to an ast.Expr; use Function.ValueForExpr
+       // instead.  NB: it requires that the function was built with
+       // debug information.)
+       Pos() token.Pos
+}
+
+// An Instruction is an SSA instruction that computes a new Value or
+// has some effect.
+//
+// An Instruction that defines a value (e.g. BinOp) also implements
+// the Value interface; an Instruction that only has an effect (e.g. Store)
+// does not.
+//
+type Instruction interface {
+       // String returns the disassembled form of this value.
+       //
+       // Examples of Instructions that are Values:
+       //       "x + y"     (BinOp)
+       //       "len([])"   (Call)
+       // Note that the name of the Value is not printed.
+       //
+       // Examples of Instructions that are not Values:
+       //       "return x"  (Return)
+       //       "*y = x"    (Store)
+       //
+       // (The separation Value.Name() from Value.String() is useful
+       // for some analyses which distinguish the operation from the
+       // value it defines, e.g., 'y = local int' is both an allocation
+       // of memory 'local int' and a definition of a pointer y.)
+       String() string
+
+       // Parent returns the function to which this instruction
+       // belongs.
+       Parent() *Function
+
+       // Block returns the basic block to which this instruction
+       // belongs.
+       Block() *BasicBlock
+
+       // setBlock sets the basic block to which this instruction belongs.
+       setBlock(*BasicBlock)
+
+       // Operands returns the operands of this instruction: the
+       // set of Values it references.
+       //
+       // Specifically, it appends their addresses to rands, a
+       // user-provided slice, and returns the resulting slice,
+       // permitting avoidance of memory allocation.
+       //
+       // The operands are appended in undefined order, but the order
+       // is consistent for a given Instruction; the addresses are
+       // always non-nil but may point to a nil Value.  Clients may
+       // store through the pointers, e.g. to effect a value
+       // renaming.
+       //
+       // Value.Referrers is a subset of the inverse of this
+       // relation.  (Referrers are not tracked for all types of
+       // Values.)
+       Operands(rands []*Value) []*Value
+
+       // Pos returns the location of the AST token most closely
+       // associated with the operation that gave rise to this
+       // instruction, or token.NoPos if it was not explicit in the
+       // source.
+       //
+       // For each ast.Node type, a particular token is designated as
+       // the closest location for the expression, e.g. the Go token
+       // for an *ast.GoStmt.  This permits a compact but approximate
+       // mapping from Instructions to source positions for use in
+       // diagnostic messages, for example.
+       //
+       // (Do not use this position to determine which Instruction
+       // corresponds to an ast.Expr; see the notes for Value.Pos.
+       // This position may be used to determine which non-Value
+       // Instruction corresponds to some ast.Stmts, but not all: If
+       // and Jump instructions have no Pos(), for example.)
+       Pos() token.Pos
+}
+
+// A Node is a node in the SSA value graph.  Every concrete type that
+// implements Node is also either a Value, an Instruction, or both.
+//
+// Node contains the methods common to Value and Instruction, plus the
+// Operands and Referrers methods generalized to return nil for
+// non-Instructions and non-Values, respectively.
+//
+// Node is provided to simplify SSA graph algorithms.  Clients should
+// use the more specific and informative Value or Instruction
+// interfaces where appropriate.
+//
+type Node interface {
+       // Common methods:
+       String() string
+       Pos() token.Pos
+       Parent() *Function
+
+       // Partial methods:
+       Operands(rands []*Value) []*Value // nil for non-Instructions
+       Referrers() *[]Instruction        // nil for non-Values
+}
+
+// Function represents the parameters, results, and code of a function
+// or method.
+//
+// If Blocks is nil, this indicates an external function for which no
+// Go source code is available.  In this case, FreeVars and Locals
+// are nil too.  Clients performing whole-program analysis must
+// handle external functions specially.
+//
+// Blocks contains the function's control-flow graph (CFG).
+// Blocks[0] is the function entry point; block order is not otherwise
+// semantically significant, though it may affect the readability of
+// the disassembly.
+// To iterate over the blocks in dominance order, use DomPreorder().
+//
+// Recover is an optional second entry point to which control resumes
+// after a recovered panic.  The Recover block may contain only a return
+// statement, preceded by a load of the function's named return
+// parameters, if any.
+//
+// A nested function (Parent()!=nil) that refers to one or more
+// lexically enclosing local variables ("free variables") has FreeVars.
+// Such functions cannot be called directly but require a
+// value created by MakeClosure which, via its Bindings, supplies
+// values for these parameters.
+//
+// If the function is a method (Signature.Recv() != nil) then the first
+// element of Params is the receiver parameter.
+//
+// A Go package may declare many functions called "init".
+// For each one, Object().Name() returns "init" but Name() returns
+// "init#1", etc, in declaration order.
+//
+// Pos() returns the declaring ast.FuncLit.Type.Func or the position
+// of the ast.FuncDecl.Name, if the function was explicit in the
+// source.  Synthetic wrappers, for which Synthetic != "", may share
+// the same position as the function they wrap.
+// Syntax.Pos() always returns the position of the declaring "func" token.
+//
+// Type() returns the function's Signature.
+//
+type Function struct {
+       name      string
+       object    types.Object     // a declared *types.Func or one of its wrappers
+       method    *types.Selection // info about provenance of synthetic methods
+       Signature *types.Signature
+       pos       token.Pos
+
+       Synthetic string        // provenance of synthetic function; "" for true source functions
+       syntax    ast.Node      // *ast.Func{Decl,Lit}; replaced with simple ast.Node after build, unless debug mode
+       parent    *Function     // enclosing function if anon; nil if global
+       Pkg       *Package      // enclosing package; nil for shared funcs (wrappers and error.Error)
+       Prog      *Program      // enclosing program
+       Params    []*Parameter  // function parameters; for methods, includes receiver
+       FreeVars  []*FreeVar    // free variables whose values must be supplied by closure
+       Locals    []*Alloc      // local variables of this function
+       Blocks    []*BasicBlock // basic blocks of the function; nil => external
+       Recover   *BasicBlock   // optional; control transfers here after recovered panic
+       AnonFuncs []*Function   // anonymous functions directly beneath this one
+       referrers []Instruction // referring instructions (iff Parent() != nil)
+
+       // The following fields are set transiently during building,
+       // then cleared.
+       currentBlock *BasicBlock             // where to emit code
+       objects      map[types.Object]Value  // addresses of local variables
+       namedResults []*Alloc                // tuple of named results
+       targets      *targets                // linked stack of branch targets
+       lblocks      map[*ast.Object]*lblock // labelled blocks
+}
+
+// BasicBlock represents an SSA basic block.
+//
+// The final element of Instrs is always an explicit transfer of
+// control (If, Jump, Return, or Panic).
+//
+// A block may contain no Instructions only if it is unreachable,
+// i.e., Preds is nil.  Empty blocks are typically pruned.
+//
+// BasicBlocks and their Preds/Succs relation form a (possibly cyclic)
+// graph independent of the SSA Value graph: the control-flow graph or
+// CFG.  It is illegal for multiple edges to exist between the same
+// pair of blocks.
+//
+// Each BasicBlock is also a node in the dominator tree of the CFG.
+// The tree may be navigated using Idom()/Dominees() and queried using
+// Dominates().
+//
+// The order of Preds and Succs is significant (to Phi and If
+// instructions, respectively).
+//
+type BasicBlock struct {
+       Index        int            // index of this block within Parent().Blocks
+       Comment      string         // optional label; no semantic significance
+       parent       *Function      // parent function
+       Instrs       []Instruction  // instructions in order
+       Preds, Succs []*BasicBlock  // predecessors and successors
+       succs2       [2]*BasicBlock // initial space for Succs
+       dom          domInfo        // dominator tree info
+       gaps         int            // number of nil Instrs (transient)
+       rundefers    int            // number of rundefers (transient)
+}
+
+// Pure values ----------------------------------------
+
+// A FreeVar represents a free variable of the function to which it
+// belongs.
+//
+// FreeVars are used to implement anonymous functions, whose free
+// variables are lexically captured in a closure formed by
+// MakeClosure.  The value of such a free var is an Alloc or another
+// FreeVar and is considered a potentially escaping heap address, with
+// pointer type.
+//
+// FreeVars are also used to implement bound method closures.  Such a
+// free var represents the receiver value and may be of any type that
+// has concrete methods.
+//
+// Pos() returns the position of the value that was captured, which
+// belongs to an enclosing function.
+//
+type FreeVar struct {
+       name      string
+       typ       types.Type
+       pos       token.Pos
+       parent    *Function
+       referrers []Instruction
+
+       // Transiently needed during building.
+       outer Value // the Value captured from the enclosing context.
+}
+
+// A Parameter represents an input parameter of a function.
+//
+type Parameter struct {
+       name      string
+       object    types.Object // a *types.Var; nil for non-source locals
+       typ       types.Type
+       pos       token.Pos
+       parent    *Function
+       referrers []Instruction
+}
+
+// A Const represents the value of a constant expression.
+//
+// The underlying type of a constant may be any boolean, numeric, or
+// string type.  In addition, a Const may represent the nil value of
+// any reference type---interface, map, channel, pointer, slice, or
+// function---but not "untyped nil".
+//
+// All source-level constant expressions are represented by a Const
+// of the same type and value.
+//
+// Value holds the value of the constant, independent of its Type(),
+// using go/constant representation, or nil for a typed nil value.
+//
+// Pos() returns token.NoPos.
+//
+// Example printed form:
+//     42:int
+//     "hello":untyped string
+//     3+4i:MyComplex
+//
+type Const struct {
+       typ   types.Type
+       Value constant.Value
+}
+
+// A Global is a named Value holding the address of a package-level
+// variable.
+//
+// Pos() returns the position of the ast.ValueSpec.Names[*]
+// identifier.
+//
+type Global struct {
+       name   string
+       object types.Object // a *types.Var; may be nil for synthetics e.g. init$guard
+       typ    types.Type
+       pos    token.Pos
+
+       Pkg *Package
+}
+
+// A Builtin represents a specific use of a built-in function, e.g. len.
+//
+// Builtins are immutable values.  Builtins do not have addresses.
+// Builtins can only appear in CallCommon.Func.
+//
+// Name() indicates the function: one of the built-in functions from the
+// Go spec (excluding "make" and "new") or one of these ssa-defined
+// intrinsics:
+//
+//   // wrapnilchk returns ptr if non-nil, panics otherwise.
+//   // (For use in indirection wrappers.)
+//   func ssa:wrapnilchk(ptr *T, recvType, methodName string) *T
+//
+// Object() returns a *types.Builtin for built-ins defined by the spec,
+// nil for others.
+//
+// Type() returns a *types.Signature representing the effective
+// signature of the built-in for this call.
+//
+type Builtin struct {
+       name string
+       sig  *types.Signature
+}
+
+// Value-defining instructions  ----------------------------------------
+
+// The Alloc instruction reserves space for a variable of the given type,
+// zero-initializes it, and yields its address.
+//
+// Alloc values are always addresses, and have pointer types, so the
+// type of the allocated variable is actually
+// Type().Underlying().(*types.Pointer).Elem().
+//
+// If Heap is false, Alloc allocates space in the function's
+// activation record (frame); we refer to an Alloc(Heap=false) as a
+// "local" alloc.  Each local Alloc returns the same address each time
+// it is executed within the same activation; the space is
+// re-initialized to zero.
+//
+// If Heap is true, Alloc allocates space in the heap; we
+// refer to an Alloc(Heap=true) as a "new" alloc.  Each new Alloc
+// returns a different address each time it is executed.
+//
+// When Alloc is applied to a channel, map or slice type, it returns
+// the address of an uninitialized (nil) reference of that kind; store
+// the result of MakeSlice, MakeMap or MakeChan in that location to
+// instantiate these types.
+//
+// Pos() returns the ast.CompositeLit.Lbrace for a composite literal,
+// or the ast.CallExpr.Rparen for a call to new() or for a call that
+// allocates a varargs slice.
+//
+// Example printed form:
+//     t0 = local int
+//     t1 = new int
+//
+type Alloc struct {
+       register
+       Comment string
+       Heap    bool
+       index   int // dense numbering; for lifting
+}
+
+// The Phi instruction represents an SSA Ï†-node, which combines values
+// that differ across incoming control-flow edges and yields a new
+// value.  Within a block, all Ï†-nodes must appear before all non-φ
+// nodes.
+//
+// Pos() returns the position of the && or || for short-circuit
+// control-flow joins, or that of the *Alloc for Ï†-nodes inserted
+// during SSA renaming.
+//
+// Example printed form:
+//     t2 = phi [0: t0, 1: t1]
+//
+type Phi struct {
+       register
+       Comment string  // a hint as to its purpose
+       Edges   []Value // Edges[i] is value for Block().Preds[i]
+}
+
+// The Call instruction represents a function or method call.
+//
+// The Call instruction yields the function result if there is exactly
+// one.  Otherwise it returns a tuple, the components of which are
+// accessed via Extract.
+//
+// See CallCommon for generic function call documentation.
+//
+// Pos() returns the ast.CallExpr.Lparen, if explicit in the source.
+//
+// Example printed form:
+//     t2 = println(t0, t1)
+//     t4 = t3()
+//     t7 = invoke t5.Println(...t6)
+//
+type Call struct {
+       register
+       Call CallCommon
+}
+
+// The BinOp instruction yields the result of binary operation X Op Y.
+//
+// Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source.
+//
+// Example printed form:
+//     t1 = t0 + 1:int
+//
+type BinOp struct {
+       register
+       // One of:
+       // ADD SUB MUL QUO REM          + - * / %
+       // AND OR XOR SHL SHR AND_NOT   & | ^ << >> &^
+       // EQL NEQ LSS LEQ GTR GEQ      == != < <= < >=
+       Op   token.Token
+       X, Y Value
+}
+
+// The UnOp instruction yields the result of Op X.
+// ARROW is channel receive.
+// MUL is pointer indirection (load).
+// XOR is bitwise complement.
+// SUB is negation.
+// NOT is logical negation.
+//
+// If CommaOk and Op=ARROW, the result is a 2-tuple of the value above
+// and a boolean indicating the success of the receive.  The
+// components of the tuple are accessed using Extract.
+//
+// Pos() returns the ast.UnaryExpr.OpPos, if explicit in the source.
+// For receive operations (ARROW) implicit in ranging over a channel,
+// Pos() returns the ast.RangeStmt.For.
+// For implicit memory loads (STAR), Pos() returns the position of the
+// most closely associated source-level construct; the details are not
+// specified.
+//
+// Example printed form:
+//     t0 = *x
+//     t2 = <-t1,ok
+//
+type UnOp struct {
+       register
+       Op      token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^
+       X       Value
+       CommaOk bool
+}
+
+// The ChangeType instruction applies to X a value-preserving type
+// change to Type().
+//
+// Type changes are permitted:
+//    - between a named type and its underlying type.
+//    - between two named types of the same underlying type.
+//    - between (possibly named) pointers to identical base types.
+//    - from a bidirectional channel to a read- or write-channel,
+//      optionally adding/removing a name.
+//
+// This operation cannot fail dynamically.
+//
+// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
+// from an explicit conversion in the source.
+//
+// Example printed form:
+//     t1 = changetype *int <- IntPtr (t0)
+//
+type ChangeType struct {
+       register
+       X Value
+}
+
+// The Convert instruction yields the conversion of value X to type
+// Type().  One or both of those types is basic (but possibly named).
+//
+// A conversion may change the value and representation of its operand.
+// Conversions are permitted:
+//    - between real numeric types.
+//    - between complex numeric types.
+//    - between string and []byte or []rune.
+//    - between pointers and unsafe.Pointer.
+//    - between unsafe.Pointer and uintptr.
+//    - from (Unicode) integer to (UTF-8) string.
+// A conversion may imply a type name change also.
+//
+// This operation cannot fail dynamically.
+//
+// Conversions of untyped string/number/bool constants to a specific
+// representation are eliminated during SSA construction.
+//
+// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
+// from an explicit conversion in the source.
+//
+// Example printed form:
+//     t1 = convert []byte <- string (t0)
+//
+type Convert struct {
+       register
+       X Value
+}
+
+// ChangeInterface constructs a value of one interface type from a
+// value of another interface type known to be assignable to it.
+// This operation cannot fail.
+//
+// Pos() returns the ast.CallExpr.Lparen if the instruction arose from
+// an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
+// instruction arose from an explicit e.(T) operation; or token.NoPos
+// otherwise.
+//
+// Example printed form:
+//     t1 = change interface interface{} <- I (t0)
+//
+type ChangeInterface struct {
+       register
+       X Value
+}
+
+// MakeInterface constructs an instance of an interface type from a
+// value of a concrete type.
+//
+// Use Program.MethodSets.MethodSet(X.Type()) to find the method-set
+// of X, and Program.MethodValue(m) to find the implementation of a method.
+//
+// To construct the zero value of an interface type T, use:
+//     NewConst(constant.MakeNil(), T, pos)
+//
+// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
+// from an explicit conversion in the source.
+//
+// Example printed form:
+//     t1 = make interface{} <- int (42:int)
+//     t2 = make Stringer <- t0
+//
+type MakeInterface struct {
+       register
+       X Value
+}
+
+// The MakeClosure instruction yields a closure value whose code is
+// Fn and whose free variables' values are supplied by Bindings.
+//
+// Type() returns a (possibly named) *types.Signature.
+//
+// Pos() returns the ast.FuncLit.Type.Func for a function literal
+// closure or the ast.SelectorExpr.Sel for a bound method closure.
+//
+// Example printed form:
+//     t0 = make closure anon@1.2 [x y z]
+//     t1 = make closure bound$(main.I).add [i]
+//
+type MakeClosure struct {
+       register
+       Fn       Value   // always a *Function
+       Bindings []Value // values for each free variable in Fn.FreeVars
+}
+
+// The MakeMap instruction creates a new hash-table-based map object
+// and yields a value of kind map.
+//
+// Type() returns a (possibly named) *types.Map.
+//
+// Pos() returns the ast.CallExpr.Lparen, if created by make(map), or
+// the ast.CompositeLit.Lbrack if created by a literal.
+//
+// Example printed form:
+//     t1 = make map[string]int t0
+//     t1 = make StringIntMap t0
+//
+type MakeMap struct {
+       register
+       Reserve Value // initial space reservation; nil => default
+}
+
+// The MakeChan instruction creates a new channel object and yields a
+// value of kind chan.
+//
+// Type() returns a (possibly named) *types.Chan.
+//
+// Pos() returns the ast.CallExpr.Lparen for the make(chan) that
+// created it.
+//
+// Example printed form:
+//     t0 = make chan int 0
+//     t0 = make IntChan 0
+//
+type MakeChan struct {
+       register
+       Size Value // int; size of buffer; zero => synchronous.
+}
+
+// The MakeSlice instruction yields a slice of length Len backed by a
+// newly allocated array of length Cap.
+//
+// Both Len and Cap must be non-nil Values of integer type.
+//
+// (Alloc(types.Array) followed by Slice will not suffice because
+// Alloc can only create arrays of constant length.)
+//
+// Type() returns a (possibly named) *types.Slice.
+//
+// Pos() returns the ast.CallExpr.Lparen for the make([]T) that
+// created it.
+//
+// Example printed form:
+//     t1 = make []string 1:int t0
+//     t1 = make StringSlice 1:int t0
+//
+type MakeSlice struct {
+       register
+       Len Value
+       Cap Value
+}
+
+// The Slice instruction yields a slice of an existing string, slice
+// or *array X between optional integer bounds Low and High.
+//
+// Dynamically, this instruction panics if X evaluates to a nil *array
+// pointer.
+//
+// Type() returns string if the type of X was string, otherwise a
+// *types.Slice with the same element type as X.
+//
+// Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice
+// operation, the ast.CompositeLit.Lbrace if created by a literal, or
+// NoPos if not explicit in the source (e.g. a variadic argument slice).
+//
+// Example printed form:
+//     t1 = slice t0[1:]
+//
+type Slice struct {
+       register
+       X              Value // slice, string, or *array
+       Low, High, Max Value // each may be nil
+}
+
+// The FieldAddr instruction yields the address of Field of *struct X.
+//
+// The field is identified by its index within the field list of the
+// struct type of X.
+//
+// Dynamically, this instruction panics if X evaluates to a nil
+// pointer.
+//
+// Type() returns a (possibly named) *types.Pointer.
+//
+// Pos() returns the position of the ast.SelectorExpr.Sel for the
+// field, if explicit in the source.
+//
+// Example printed form:
+//     t1 = &t0.name [#1]
+//
+type FieldAddr struct {
+       register
+       X     Value // *struct
+       Field int   // field is X.Type().Underlying().(*types.Pointer).Elem().Underlying().(*types.Struct).Field(Field)
+}
+
+// The Field instruction yields the Field of struct X.
+//
+// The field is identified by its index within the field list of the
+// struct type of X; by using numeric indices we avoid ambiguity of
+// package-local identifiers and permit compact representations.
+//
+// Pos() returns the position of the ast.SelectorExpr.Sel for the
+// field, if explicit in the source.
+//
+// Example printed form:
+//     t1 = t0.name [#1]
+//
+type Field struct {
+       register
+       X     Value // struct
+       Field int   // index into X.Type().(*types.Struct).Fields
+}
+
+// The IndexAddr instruction yields the address of the element at
+// index Index of collection X.  Index is an integer expression.
+//
+// The elements of maps and strings are not addressable; use Lookup or
+// MapUpdate instead.
+//
+// Dynamically, this instruction panics if X evaluates to a nil *array
+// pointer.
+//
+// Type() returns a (possibly named) *types.Pointer.
+//
+// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
+// explicit in the source.
+//
+// Example printed form:
+//     t2 = &t0[t1]
+//
+type IndexAddr struct {
+       register
+       X     Value // slice or *array,
+       Index Value // numeric index
+}
+
+// The Index instruction yields element Index of array X.
+//
+// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
+// explicit in the source.
+//
+// Example printed form:
+//     t2 = t0[t1]
+//
+type Index struct {
+       register
+       X     Value // array
+       Index Value // integer index
+}
+
+// The Lookup instruction yields element Index of collection X, a map
+// or string.  Index is an integer expression if X is a string or the
+// appropriate key type if X is a map.
+//
+// If CommaOk, the result is a 2-tuple of the value above and a
+// boolean indicating the result of a map membership test for the key.
+// The components of the tuple are accessed using Extract.
+//
+// Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source.
+//
+// Example printed form:
+//     t2 = t0[t1]
+//     t5 = t3[t4],ok
+//
+type Lookup struct {
+       register
+       X       Value // string or map
+       Index   Value // numeric or key-typed index
+       CommaOk bool  // return a value,ok pair
+}
+
+// SelectState is a helper for Select.
+// It represents one goal state and its corresponding communication.
+//
+type SelectState struct {
+       Dir       types.ChanDir // direction of case (SendOnly or RecvOnly)
+       Chan      Value         // channel to use (for send or receive)
+       Send      Value         // value to send (for send)
+       Pos       token.Pos     // position of token.ARROW
+       DebugNode ast.Node      // ast.SendStmt or ast.UnaryExpr(<-) [debug mode]
+}
+
+// The Select instruction tests whether (or blocks until) one
+// of the specified sent or received states is entered.
+//
+// Let n be the number of States for which Dir==RECV and T_i (0<=i<n)
+// be the element type of each such state's Chan.
+// Select returns an n+2-tuple
+//    (index int, recvOk bool, r_0 T_0, ... r_n-1 T_n-1)
+// The tuple's components, described below, must be accessed via the
+// Extract instruction.
+//
+// If Blocking, select waits until exactly one state holds, i.e. a
+// channel becomes ready for the designated operation of sending or
+// receiving; select chooses one among the ready states
+// pseudorandomly, performs the send or receive operation, and sets
+// 'index' to the index of the chosen channel.
+//
+// If !Blocking, select doesn't block if no states hold; instead it
+// returns immediately with index equal to -1.
+//
+// If the chosen channel was used for a receive, the r_i component is
+// set to the received value, where i is the index of that state among
+// all n receive states; otherwise r_i has the zero value of type T_i.
+// Note that the receive index i is not the same as the state
+// index index.
+//
+// The second component of the triple, recvOk, is a boolean whose value
+// is true iff the selected operation was a receive and the receive
+// successfully yielded a value.
+//
+// Pos() returns the ast.SelectStmt.Select.
+//
+// Example printed form:
+//     t3 = select nonblocking [<-t0, t1<-t2]
+//     t4 = select blocking []
+//
+type Select struct {
+       register
+       States   []*SelectState
+       Blocking bool
+}
+
+// The Range instruction yields an iterator over the domain and range
+// of X, which must be a string or map.
+//
+// Elements are accessed via Next.
+//
+// Type() returns an opaque and degenerate "rangeIter" type.
+//
+// Pos() returns the ast.RangeStmt.For.
+//
+// Example printed form:
+//     t0 = range "hello":string
+//
+type Range struct {
+       register
+       X Value // string or map
+}
+
+// The Next instruction reads and advances the (map or string)
+// iterator Iter and returns a 3-tuple value (ok, k, v).  If the
+// iterator is not exhausted, ok is true and k and v are the next
+// elements of the domain and range, respectively.  Otherwise ok is
+// false and k and v are undefined.
+//
+// Components of the tuple are accessed using Extract.
+//
+// The IsString field distinguishes iterators over strings from those
+// over maps, as the Type() alone is insufficient: consider
+// map[int]rune.
+//
+// Type() returns a *types.Tuple for the triple (ok, k, v).
+// The types of k and/or v may be types.Invalid.
+//
+// Example printed form:
+//     t1 = next t0
+//
+type Next struct {
+       register
+       Iter     Value
+       IsString bool // true => string iterator; false => map iterator.
+}
+
+// The TypeAssert instruction tests whether interface value X has type
+// AssertedType.
+//
+// If !CommaOk, on success it returns v, the result of the conversion
+// (defined below); on failure it panics.
+//
+// If CommaOk: on success it returns a pair (v, true) where v is the
+// result of the conversion; on failure it returns (z, false) where z
+// is AssertedType's zero value.  The components of the pair must be
+// accessed using the Extract instruction.
+//
+// If AssertedType is a concrete type, TypeAssert checks whether the
+// dynamic type in interface X is equal to it, and if so, the result
+// of the conversion is a copy of the value in the interface.
+//
+// If AssertedType is an interface, TypeAssert checks whether the
+// dynamic type of the interface is assignable to it, and if so, the
+// result of the conversion is a copy of the interface value X.
+// If AssertedType is a superinterface of X.Type(), the operation will
+// fail iff the operand is nil.  (Contrast with ChangeInterface, which
+// performs no nil-check.)
+//
+// Type() reflects the actual type of the result, possibly a
+// 2-types.Tuple; AssertedType is the asserted type.
+//
+// Pos() returns the ast.CallExpr.Lparen if the instruction arose from
+// an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
+// instruction arose from an explicit e.(T) operation; or the
+// ast.CaseClause.Case if the instruction arose from a case of a
+// type-switch statement.
+//
+// Example printed form:
+//     t1 = typeassert t0.(int)
+//     t3 = typeassert,ok t2.(T)
+//
+type TypeAssert struct {
+       register
+       X            Value
+       AssertedType types.Type
+       CommaOk      bool
+}
+
+// The Extract instruction yields component Index of Tuple.
+//
+// This is used to access the results of instructions with multiple
+// return values, such as Call, TypeAssert, Next, UnOp(ARROW) and
+// IndexExpr(Map).
+//
+// Example printed form:
+//     t1 = extract t0 #1
+//
+type Extract struct {
+       register
+       Tuple Value
+       Index int
+}
+
+// Instructions executed for effect.  They do not yield a value. --------------------
+
+// The Jump instruction transfers control to the sole successor of its
+// owning block.
+//
+// A Jump must be the last instruction of its containing BasicBlock.
+//
+// Pos() returns NoPos.
+//
+// Example printed form:
+//     jump done
+//
+type Jump struct {
+       anInstruction
+}
+
+// The If instruction transfers control to one of the two successors
+// of its owning block, depending on the boolean Cond: the first if
+// true, the second if false.
+//
+// An If instruction must be the last instruction of its containing
+// BasicBlock.
+//
+// Pos() returns NoPos.
+//
+// Example printed form:
+//     if t0 goto done else body
+//
+type If struct {
+       anInstruction
+       Cond Value
+}
+
+// The Return instruction returns values and control back to the calling
+// function.
+//
+// len(Results) is always equal to the number of results in the
+// function's signature.
+//
+// If len(Results) > 1, Return returns a tuple value with the specified
+// components which the caller must access using Extract instructions.
+//
+// There is no instruction to return a ready-made tuple like those
+// returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or
+// a tail-call to a function with multiple result parameters.
+//
+// Return must be the last instruction of its containing BasicBlock.
+// Such a block has no successors.
+//
+// Pos() returns the ast.ReturnStmt.Return, if explicit in the source.
+//
+// Example printed form:
+//     return
+//     return nil:I, 2:int
+//
+type Return struct {
+       anInstruction
+       Results []Value
+       pos     token.Pos
+}
+
+// The RunDefers instruction pops and invokes the entire stack of
+// procedure calls pushed by Defer instructions in this function.
+//
+// It is legal to encounter multiple 'rundefers' instructions in a
+// single control-flow path through a function; this is useful in
+// the combined init() function, for example.
+//
+// Pos() returns NoPos.
+//
+// Example printed form:
+//     rundefers
+//
+type RunDefers struct {
+       anInstruction
+}
+
+// The Panic instruction initiates a panic with value X.
+//
+// A Panic instruction must be the last instruction of its containing
+// BasicBlock, which must have no successors.
+//
+// NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction;
+// they are treated as calls to a built-in function.
+//
+// Pos() returns the ast.CallExpr.Lparen if this panic was explicit
+// in the source.
+//
+// Example printed form:
+//     panic t0
+//
+type Panic struct {
+       anInstruction
+       X   Value // an interface{}
+       pos token.Pos
+}
+
+// The Go instruction creates a new goroutine and calls the specified
+// function within it.
+//
+// See CallCommon for generic function call documentation.
+//
+// Pos() returns the ast.GoStmt.Go.
+//
+// Example printed form:
+//     go println(t0, t1)
+//     go t3()
+//     go invoke t5.Println(...t6)
+//
+type Go struct {
+       anInstruction
+       Call CallCommon
+       pos  token.Pos
+}
+
+// The Defer instruction pushes the specified call onto a stack of
+// functions to be called by a RunDefers instruction or by a panic.
+//
+// See CallCommon for generic function call documentation.
+//
+// Pos() returns the ast.DeferStmt.Defer.
+//
+// Example printed form:
+//     defer println(t0, t1)
+//     defer t3()
+//     defer invoke t5.Println(...t6)
+//
+type Defer struct {
+       anInstruction
+       Call CallCommon
+       pos  token.Pos
+}
+
+// The Send instruction sends X on channel Chan.
+//
+// Pos() returns the ast.SendStmt.Arrow, if explicit in the source.
+//
+// Example printed form:
+//     send t0 <- t1
+//
+type Send struct {
+       anInstruction
+       Chan, X Value
+       pos     token.Pos
+}
+
+// The Store instruction stores Val at address Addr.
+// Stores can be of arbitrary types.
+//
+// Pos() returns the position of the source-level construct most closely
+// associated with the memory store operation.
+// Since implicit memory stores are numerous and varied and depend upon
+// implementation choices, the details are not specified.
+//
+// Example printed form:
+//     *x = y
+//
+type Store struct {
+       anInstruction
+       Addr Value
+       Val  Value
+       pos  token.Pos
+}
+
+// The MapUpdate instruction updates the association of Map[Key] to
+// Value.
+//
+// Pos() returns the ast.KeyValueExpr.Colon or ast.IndexExpr.Lbrack,
+// if explicit in the source.
+//
+// Example printed form:
+//     t0[t1] = t2
+//
+type MapUpdate struct {
+       anInstruction
+       Map   Value
+       Key   Value
+       Value Value
+       pos   token.Pos
+}
+
+// A DebugRef instruction maps a source-level expression Expr to the
+// SSA value X that represents the value (!IsAddr) or address (IsAddr)
+// of that expression.
+//
+// DebugRef is a pseudo-instruction: it has no dynamic effect.
+//
+// Pos() returns Expr.Pos(), the start position of the source-level
+// expression.  This is not the same as the "designated" token as
+// documented at Value.Pos(). e.g. CallExpr.Pos() does not return the
+// position of the ("designated") Lparen token.
+//
+// If Expr is an *ast.Ident denoting a var or func, Object() returns
+// the object; though this information can be obtained from the type
+// checker, including it here greatly facilitates debugging.
+// For non-Ident expressions, Object() returns nil.
+//
+// DebugRefs are generated only for functions built with debugging
+// enabled; see Package.SetDebugMode() and the GlobalDebug builder
+// mode flag.
+//
+// DebugRefs are not emitted for ast.Idents referring to constants or
+// predeclared identifiers, since they are trivial and numerous.
+// Nor are they emitted for ast.ParenExprs.
+//
+// (By representing these as instructions, rather than out-of-band,
+// consistency is maintained during transformation passes by the
+// ordinary SSA renaming machinery.)
+//
+// Example printed form:
+//      ; *ast.CallExpr @ 102:9 is t5
+//      ; var x float64 @ 109:72 is x
+//      ; address of *ast.CompositeLit @ 216:10 is t0
+//
+type DebugRef struct {
+       anInstruction
+       Expr   ast.Expr     // the referring expression (never *ast.ParenExpr)
+       object types.Object // the identity of the source var/func
+       IsAddr bool         // Expr is addressable and X is the address it denotes
+       X      Value        // the value or address of Expr
+}
+
+// Embeddable mix-ins and helpers for common parts of other structs. -----------
+
+// register is a mix-in embedded by all SSA values that are also
+// instructions, i.e. virtual registers, and provides a uniform
+// implementation of most of the Value interface: Value.Name() is a
+// numbered register (e.g. "t0"); the other methods are field accessors.
+//
+// Temporary names are automatically assigned to each register on
+// completion of building a function in SSA form.
+//
+// Clients must not assume that the 'id' value (and the Name() derived
+// from it) is unique within a function.  As always in this API,
+// semantics are determined only by identity; names exist only to
+// facilitate debugging.
+//
+type register struct {
+       anInstruction
+       num       int        // "name" of virtual register, e.g. "t0".  Not guaranteed unique.
+       typ       types.Type // type of virtual register
+       pos       token.Pos  // position of source expression, or NoPos
+       referrers []Instruction
+}
+
+// anInstruction is a mix-in embedded by all Instructions.
+// It provides the implementations of the Block and setBlock methods.
+type anInstruction struct {
+       block *BasicBlock // the basic block of this instruction
+}
+
+// CallCommon is contained by Go, Defer and Call to hold the
+// common parts of a function or method call.
+//
+// Each CallCommon exists in one of two modes, function call and
+// interface method invocation, or "call" and "invoke" for short.
+//
+// 1. "call" mode: when Method is nil (!IsInvoke), a CallCommon
+// represents an ordinary function call of the value in Value,
+// which may be a *Builtin, a *Function or any other value of kind
+// 'func'.
+//
+// Value may be one of:
+//    (a) a *Function, indicating a statically dispatched call
+//        to a package-level function, an anonymous function, or
+//        a method of a named type.
+//    (b) a *MakeClosure, indicating an immediately applied
+//        function literal with free variables.
+//    (c) a *Builtin, indicating a statically dispatched call
+//        to a built-in function.
+//    (d) any other value, indicating a dynamically dispatched
+//        function call.
+// StaticCallee returns the identity of the callee in cases
+// (a) and (b), nil otherwise.
+//
+// Args contains the arguments to the call.  If Value is a method,
+// Args[0] contains the receiver parameter.
+//
+// Example printed form:
+//     t2 = println(t0, t1)
+//     go t3()
+//     defer t5(...t6)
+//
+// 2. "invoke" mode: when Method is non-nil (IsInvoke), a CallCommon
+// represents a dynamically dispatched call to an interface method.
+// In this mode, Value is the interface value and Method is the
+// interface's abstract method.  Note: an abstract method may be
+// shared by multiple interfaces due to embedding; Value.Type()
+// provides the specific interface used for this call.
+//
+// Value is implicitly supplied to the concrete method implementation
+// as the receiver parameter; in other words, Args[0] holds not the
+// receiver but the first true argument.
+//
+// Example printed form:
+//     t1 = invoke t0.String()
+//     go invoke t3.Run(t2)
+//     defer invoke t4.Handle(...t5)
+//
+// For all calls to variadic functions (Signature().Variadic()),
+// the last element of Args is a slice.
+//
+type CallCommon struct {
+       Value  Value       // receiver (invoke mode) or func value (call mode)
+       Method *types.Func // abstract method (invoke mode)
+       Args   []Value     // actual parameters (in static method call, includes receiver)
+       pos    token.Pos   // position of CallExpr.Lparen, iff explicit in source
+}
+
+// IsInvoke returns true if this call has "invoke" (not "call") mode.
+func (c *CallCommon) IsInvoke() bool {
+       return c.Method != nil
+}
+
+func (c *CallCommon) Pos() token.Pos { return c.pos }
+
+// Signature returns the signature of the called function.
+//
+// For an "invoke"-mode call, the signature of the interface method is
+// returned.
+//
+// In either "call" or "invoke" mode, if the callee is a method, its
+// receiver is represented by sig.Recv, not sig.Params().At(0).
+//
+func (c *CallCommon) Signature() *types.Signature {
+       if c.Method != nil {
+               return c.Method.Type().(*types.Signature)
+       }
+       return c.Value.Type().Underlying().(*types.Signature)
+}
+
+// StaticCallee returns the callee if this is a trivially static
+// "call"-mode call to a function.
+func (c *CallCommon) StaticCallee() *Function {
+       switch fn := c.Value.(type) {
+       case *Function:
+               return fn
+       case *MakeClosure:
+               return fn.Fn.(*Function)
+       }
+       return nil
+}
+
+// Description returns a description of the mode of this call suitable
+// for a user interface, e.g., "static method call".
+func (c *CallCommon) Description() string {
+       switch fn := c.Value.(type) {
+       case *Builtin:
+               return "built-in function call"
+       case *MakeClosure:
+               return "static function closure call"
+       case *Function:
+               if fn.Signature.Recv() != nil {
+                       return "static method call"
+               }
+               return "static function call"
+       }
+       if c.IsInvoke() {
+               return "dynamic method call" // ("invoke" mode)
+       }
+       return "dynamic function call"
+}
+
+// The CallInstruction interface, implemented by *Go, *Defer and *Call,
+// exposes the common parts of function-calling instructions,
+// yet provides a way back to the Value defined by *Call alone.
+//
+type CallInstruction interface {
+       Instruction
+       Common() *CallCommon // returns the common parts of the call
+       Value() *Call        // returns the result value of the call (*Call) or nil (*Go, *Defer)
+}
+
+func (s *Call) Common() *CallCommon  { return &s.Call }
+func (s *Defer) Common() *CallCommon { return &s.Call }
+func (s *Go) Common() *CallCommon    { return &s.Call }
+
+func (s *Call) Value() *Call  { return s }
+func (s *Defer) Value() *Call { return nil }
+func (s *Go) Value() *Call    { return nil }
+
+func (v *Builtin) Type() types.Type        { return v.sig }
+func (v *Builtin) Name() string            { return v.name }
+func (*Builtin) Referrers() *[]Instruction { return nil }
+func (v *Builtin) Pos() token.Pos          { return token.NoPos }
+func (v *Builtin) Object() types.Object    { return types.Universe.Lookup(v.name) }
+func (v *Builtin) Parent() *Function       { return nil }
+
+func (v *FreeVar) Type() types.Type          { return v.typ }
+func (v *FreeVar) Name() string              { return v.name }
+func (v *FreeVar) Referrers() *[]Instruction { return &v.referrers }
+func (v *FreeVar) Pos() token.Pos            { return v.pos }
+func (v *FreeVar) Parent() *Function         { return v.parent }
+
+func (v *Global) Type() types.Type                     { return v.typ }
+func (v *Global) Name() string                         { return v.name }
+func (v *Global) Parent() *Function                    { return nil }
+func (v *Global) Pos() token.Pos                       { return v.pos }
+func (v *Global) Referrers() *[]Instruction            { return nil }
+func (v *Global) Token() token.Token                   { return token.VAR }
+func (v *Global) Object() types.Object                 { return v.object }
+func (v *Global) String() string                       { return v.RelString(nil) }
+func (v *Global) Package() *Package                    { return v.Pkg }
+func (v *Global) RelString(from *types.Package) string { return relString(v, from) }
+
+func (v *Function) Name() string         { return v.name }
+func (v *Function) Type() types.Type     { return v.Signature }
+func (v *Function) Pos() token.Pos       { return v.pos }
+func (v *Function) Token() token.Token   { return token.FUNC }
+func (v *Function) Object() types.Object { return v.object }
+func (v *Function) String() string       { return v.RelString(nil) }
+func (v *Function) Package() *Package    { return v.Pkg }
+func (v *Function) Parent() *Function    { return v.parent }
+func (v *Function) Referrers() *[]Instruction {
+       if v.parent != nil {
+               return &v.referrers
+       }
+       return nil
+}
+
+func (v *Parameter) Type() types.Type          { return v.typ }
+func (v *Parameter) Name() string              { return v.name }
+func (v *Parameter) Object() types.Object      { return v.object }
+func (v *Parameter) Referrers() *[]Instruction { return &v.referrers }
+func (v *Parameter) Pos() token.Pos            { return v.pos }
+func (v *Parameter) Parent() *Function         { return v.parent }
+
+func (v *Alloc) Type() types.Type          { return v.typ }
+func (v *Alloc) Referrers() *[]Instruction { return &v.referrers }
+func (v *Alloc) Pos() token.Pos            { return v.pos }
+
+func (v *register) Type() types.Type          { return v.typ }
+func (v *register) setType(typ types.Type)    { v.typ = typ }
+func (v *register) Name() string              { return fmt.Sprintf("t%d", v.num) }
+func (v *register) setNum(num int)            { v.num = num }
+func (v *register) Referrers() *[]Instruction { return &v.referrers }
+func (v *register) Pos() token.Pos            { return v.pos }
+func (v *register) setPos(pos token.Pos)      { v.pos = pos }
+
+func (v *anInstruction) Parent() *Function          { return v.block.parent }
+func (v *anInstruction) Block() *BasicBlock         { return v.block }
+func (v *anInstruction) setBlock(block *BasicBlock) { v.block = block }
+func (v *anInstruction) Referrers() *[]Instruction  { return nil }
+
+func (t *Type) Name() string                         { return t.object.Name() }
+func (t *Type) Pos() token.Pos                       { return t.object.Pos() }
+func (t *Type) Type() types.Type                     { return t.object.Type() }
+func (t *Type) Token() token.Token                   { return token.TYPE }
+func (t *Type) Object() types.Object                 { return t.object }
+func (t *Type) String() string                       { return t.RelString(nil) }
+func (t *Type) Package() *Package                    { return t.pkg }
+func (t *Type) RelString(from *types.Package) string { return relString(t, from) }
+
+func (c *NamedConst) Name() string                         { return c.object.Name() }
+func (c *NamedConst) Pos() token.Pos                       { return c.object.Pos() }
+func (c *NamedConst) String() string                       { return c.RelString(nil) }
+func (c *NamedConst) Type() types.Type                     { return c.object.Type() }
+func (c *NamedConst) Token() token.Token                   { return token.CONST }
+func (c *NamedConst) Object() types.Object                 { return c.object }
+func (c *NamedConst) Package() *Package                    { return c.pkg }
+func (c *NamedConst) RelString(from *types.Package) string { return relString(c, from) }
+
+func (d *DebugRef) Object() types.Object { return d.object }
+
+// Func returns the package-level function of the specified name,
+// or nil if not found.
+//
+func (p *Package) Func(name string) (f *Function) {
+       f, _ = p.Members[name].(*Function)
+       return
+}
+
+// Var returns the package-level variable of the specified name,
+// or nil if not found.
+//
+func (p *Package) Var(name string) (g *Global) {
+       g, _ = p.Members[name].(*Global)
+       return
+}
+
+// Const returns the package-level constant of the specified name,
+// or nil if not found.
+//
+func (p *Package) Const(name string) (c *NamedConst) {
+       c, _ = p.Members[name].(*NamedConst)
+       return
+}
+
+// Type returns the package-level type of the specified name,
+// or nil if not found.
+//
+func (p *Package) Type(name string) (t *Type) {
+       t, _ = p.Members[name].(*Type)
+       return
+}
+
+func (v *Call) Pos() token.Pos      { return v.Call.pos }
+func (s *Defer) Pos() token.Pos     { return s.pos }
+func (s *Go) Pos() token.Pos        { return s.pos }
+func (s *MapUpdate) Pos() token.Pos { return s.pos }
+func (s *Panic) Pos() token.Pos     { return s.pos }
+func (s *Return) Pos() token.Pos    { return s.pos }
+func (s *Send) Pos() token.Pos      { return s.pos }
+func (s *Store) Pos() token.Pos     { return s.pos }
+func (s *If) Pos() token.Pos        { return token.NoPos }
+func (s *Jump) Pos() token.Pos      { return token.NoPos }
+func (s *RunDefers) Pos() token.Pos { return token.NoPos }
+func (s *DebugRef) Pos() token.Pos  { return s.Expr.Pos() }
+
+// Operands.
+
+func (v *Alloc) Operands(rands []*Value) []*Value {
+       return rands
+}
+
+func (v *BinOp) Operands(rands []*Value) []*Value {
+       return append(rands, &v.X, &v.Y)
+}
+
+func (c *CallCommon) Operands(rands []*Value) []*Value {
+       rands = append(rands, &c.Value)
+       for i := range c.Args {
+               rands = append(rands, &c.Args[i])
+       }
+       return rands
+}
+
+func (s *Go) Operands(rands []*Value) []*Value {
+       return s.Call.Operands(rands)
+}
+
+func (s *Call) Operands(rands []*Value) []*Value {
+       return s.Call.Operands(rands)
+}
+
+func (s *Defer) Operands(rands []*Value) []*Value {
+       return s.Call.Operands(rands)
+}
+
+func (v *ChangeInterface) Operands(rands []*Value) []*Value {
+       return append(rands, &v.X)
+}
+
+func (v *ChangeType) Operands(rands []*Value) []*Value {
+       return append(rands, &v.X)
+}
+
+func (v *Convert) Operands(rands []*Value) []*Value {
+       return append(rands, &v.X)
+}
+
+func (s *DebugRef) Operands(rands []*Value) []*Value {
+       return append(rands, &s.X)
+}
+
+func (v *Extract) Operands(rands []*Value) []*Value {
+       return append(rands, &v.Tuple)
+}
+
+func (v *Field) Operands(rands []*Value) []*Value {
+       return append(rands, &v.X)
+}
+
+func (v *FieldAddr) Operands(rands []*Value) []*Value {
+       return append(rands, &v.X)
+}
+
+func (s *If) Operands(rands []*Value) []*Value {
+       return append(rands, &s.Cond)
+}
+
+func (v *Index) Operands(rands []*Value) []*Value {
+       return append(rands, &v.X, &v.Index)
+}
+
+func (v *IndexAddr) Operands(rands []*Value) []*Value {
+       return append(rands, &v.X, &v.Index)
+}
+
+func (*Jump) Operands(rands []*Value) []*Value {
+       return rands
+}
+
+func (v *Lookup) Operands(rands []*Value) []*Value {
+       return append(rands, &v.X, &v.Index)
+}
+
+func (v *MakeChan) Operands(rands []*Value) []*Value {
+       return append(rands, &v.Size)
+}
+
+func (v *MakeClosure) Operands(rands []*Value) []*Value {
+       rands = append(rands, &v.Fn)
+       for i := range v.Bindings {
+               rands = append(rands, &v.Bindings[i])
+       }
+       return rands
+}
+
+func (v *MakeInterface) Operands(rands []*Value) []*Value {
+       return append(rands, &v.X)
+}
+
+func (v *MakeMap) Operands(rands []*Value) []*Value {
+       return append(rands, &v.Reserve)
+}
+
+func (v *MakeSlice) Operands(rands []*Value) []*Value {
+       return append(rands, &v.Len, &v.Cap)
+}
+
+func (v *MapUpdate) Operands(rands []*Value) []*Value {
+       return append(rands, &v.Map, &v.Key, &v.Value)
+}
+
+func (v *Next) Operands(rands []*Value) []*Value {
+       return append(rands, &v.Iter)
+}
+
+func (s *Panic) Operands(rands []*Value) []*Value {
+       return append(rands, &s.X)
+}
+
+func (v *Phi) Operands(rands []*Value) []*Value {
+       for i := range v.Edges {
+               rands = append(rands, &v.Edges[i])
+       }
+       return rands
+}
+
+func (v *Range) Operands(rands []*Value) []*Value {
+       return append(rands, &v.X)
+}
+
+func (s *Return) Operands(rands []*Value) []*Value {
+       for i := range s.Results {
+               rands = append(rands, &s.Results[i])
+       }
+       return rands
+}
+
+func (*RunDefers) Operands(rands []*Value) []*Value {
+       return rands
+}
+
+func (v *Select) Operands(rands []*Value) []*Value {
+       for i := range v.States {
+               rands = append(rands, &v.States[i].Chan, &v.States[i].Send)
+       }
+       return rands
+}
+
+func (s *Send) Operands(rands []*Value) []*Value {
+       return append(rands, &s.Chan, &s.X)
+}
+
+func (v *Slice) Operands(rands []*Value) []*Value {
+       return append(rands, &v.X, &v.Low, &v.High, &v.Max)
+}
+
+func (s *Store) Operands(rands []*Value) []*Value {
+       return append(rands, &s.Addr, &s.Val)
+}
+
+func (v *TypeAssert) Operands(rands []*Value) []*Value {
+       return append(rands, &v.X)
+}
+
+func (v *UnOp) Operands(rands []*Value) []*Value {
+       return append(rands, &v.X)
+}
+
+// Non-Instruction Values:
+func (v *Builtin) Operands(rands []*Value) []*Value   { return rands }
+func (v *FreeVar) Operands(rands []*Value) []*Value   { return rands }
+func (v *Const) Operands(rands []*Value) []*Value     { return rands }
+func (v *Function) Operands(rands []*Value) []*Value  { return rands }
+func (v *Global) Operands(rands []*Value) []*Value    { return rands }
+func (v *Parameter) Operands(rands []*Value) []*Value { return rands }