Giant blob of minor changes
[dotfiles/.git] / .config / coc / extensions / coc-go-data / tools / pkg / mod / golang.org / x / tools@v0.0.0-20201028153306-37f0764111ff / go / pointer / doc.go
1 // Copyright 2013 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 /*
6
7 Package pointer implements Andersen's analysis, an inclusion-based
8 pointer analysis algorithm first described in (Andersen, 1994).
9
10 A pointer analysis relates every pointer expression in a whole program
11 to the set of memory locations to which it might point.  This
12 information can be used to construct a call graph of the program that
13 precisely represents the destinations of dynamic function and method
14 calls.  It can also be used to determine, for example, which pairs of
15 channel operations operate on the same channel.
16
17 The package allows the client to request a set of expressions of
18 interest for which the points-to information will be returned once the
19 analysis is complete.  In addition, the client may request that a
20 callgraph is constructed.  The example program in example_test.go
21 demonstrates both of these features.  Clients should not request more
22 information than they need since it may increase the cost of the
23 analysis significantly.
24
25
26 CLASSIFICATION
27
28 Our algorithm is INCLUSION-BASED: the points-to sets for x and y will
29 be related by pts(y) ⊇ pts(x) if the program contains the statement
30 y = x.
31
32 It is FLOW-INSENSITIVE: it ignores all control flow constructs and the
33 order of statements in a program.  It is therefore a "MAY ALIAS"
34 analysis: its facts are of the form "P may/may not point to L",
35 not "P must point to L".
36
37 It is FIELD-SENSITIVE: it builds separate points-to sets for distinct
38 fields, such as x and y in struct { x, y *int }.
39
40 It is mostly CONTEXT-INSENSITIVE: most functions are analyzed once,
41 so values can flow in at one call to the function and return out at
42 another.  Only some smaller functions are analyzed with consideration
43 of their calling context.
44
45 It has a CONTEXT-SENSITIVE HEAP: objects are named by both allocation
46 site and context, so the objects returned by two distinct calls to f:
47    func f() *T { return new(T) }
48 are distinguished up to the limits of the calling context.
49
50 It is a WHOLE PROGRAM analysis: it requires SSA-form IR for the
51 complete Go program and summaries for native code.
52
53 See the (Hind, PASTE'01) survey paper for an explanation of these terms.
54
55
56 SOUNDNESS
57
58 The analysis is fully sound when invoked on pure Go programs that do not
59 use reflection or unsafe.Pointer conversions.  In other words, if there
60 is any possible execution of the program in which pointer P may point to
61 object O, the analysis will report that fact.
62
63
64 REFLECTION
65
66 By default, the "reflect" library is ignored by the analysis, as if all
67 its functions were no-ops, but if the client enables the Reflection flag,
68 the analysis will make a reasonable attempt to model the effects of
69 calls into this library.  However, this comes at a significant
70 performance cost, and not all features of that library are yet
71 implemented.  In addition, some simplifying approximations must be made
72 to ensure that the analysis terminates; for example, reflection can be
73 used to construct an infinite set of types and values of those types,
74 but the analysis arbitrarily bounds the depth of such types.
75
76 Most but not all reflection operations are supported.
77 In particular, addressable reflect.Values are not yet implemented, so
78 operations such as (reflect.Value).Set have no analytic effect.
79
80
81 UNSAFE POINTER CONVERSIONS
82
83 The pointer analysis makes no attempt to understand aliasing between the
84 operand x and result y of an unsafe.Pointer conversion:
85    y = (*T)(unsafe.Pointer(x))
86 It is as if the conversion allocated an entirely new object:
87    y = new(T)
88
89
90 NATIVE CODE
91
92 The analysis cannot model the aliasing effects of functions written in
93 languages other than Go, such as runtime intrinsics in C or assembly, or
94 code accessed via cgo.  The result is as if such functions are no-ops.
95 However, various important intrinsics are understood by the analysis,
96 along with built-ins such as append.
97
98 The analysis currently provides no way for users to specify the aliasing
99 effects of native code.
100
101 ------------------------------------------------------------------------
102
103 IMPLEMENTATION
104
105 The remaining documentation is intended for package maintainers and
106 pointer analysis specialists.  Maintainers should have a solid
107 understanding of the referenced papers (especially those by H&L and PKH)
108 before making making significant changes.
109
110 The implementation is similar to that described in (Pearce et al,
111 PASTE'04).  Unlike many algorithms which interleave constraint
112 generation and solving, constructing the callgraph as they go, this
113 implementation for the most part observes a phase ordering (generation
114 before solving), with only simple (copy) constraints being generated
115 during solving.  (The exception is reflection, which creates various
116 constraints during solving as new types flow to reflect.Value
117 operations.)  This improves the traction of presolver optimisations,
118 but imposes certain restrictions, e.g. potential context sensitivity
119 is limited since all variants must be created a priori.
120
121
122 TERMINOLOGY
123
124 A type is said to be "pointer-like" if it is a reference to an object.
125 Pointer-like types include pointers and also interfaces, maps, channels,
126 functions and slices.
127
128 We occasionally use C's x->f notation to distinguish the case where x
129 is a struct pointer from x.f where is a struct value.
130
131 Pointer analysis literature (and our comments) often uses the notation
132 dst=*src+offset to mean something different than what it means in Go.
133 It means: for each node index p in pts(src), the node index p+offset is
134 in pts(dst).  Similarly *dst+offset=src is used for store constraints
135 and dst=src+offset for offset-address constraints.
136
137
138 NODES
139
140 Nodes are the key datastructure of the analysis, and have a dual role:
141 they represent both constraint variables (equivalence classes of
142 pointers) and members of points-to sets (things that can be pointed
143 at, i.e. "labels").
144
145 Nodes are naturally numbered.  The numbering enables compact
146 representations of sets of nodes such as bitvectors (or BDDs); and the
147 ordering enables a very cheap way to group related nodes together.  For
148 example, passing n parameters consists of generating n parallel
149 constraints from caller+i to callee+i for 0<=i<n.
150
151 The zero nodeid means "not a pointer".  For simplicity, we generate flow
152 constraints even for non-pointer types such as int.  The pointer
153 equivalence (PE) presolver optimization detects which variables cannot
154 point to anything; this includes not only all variables of non-pointer
155 types (such as int) but also variables of pointer-like types if they are
156 always nil, or are parameters to a function that is never called.
157
158 Each node represents a scalar part of a value or object.
159 Aggregate types (structs, tuples, arrays) are recursively flattened
160 out into a sequential list of scalar component types, and all the
161 elements of an array are represented by a single node.  (The
162 flattening of a basic type is a list containing a single node.)
163
164 Nodes are connected into a graph with various kinds of labelled edges:
165 simple edges (or copy constraints) represent value flow.  Complex
166 edges (load, store, etc) trigger the creation of new simple edges
167 during the solving phase.
168
169
170 OBJECTS
171
172 Conceptually, an "object" is a contiguous sequence of nodes denoting
173 an addressable location: something that a pointer can point to.  The
174 first node of an object has a non-nil obj field containing information
175 about the allocation: its size, context, and ssa.Value.
176
177 Objects include:
178    - functions and globals;
179    - variable allocations in the stack frame or heap;
180    - maps, channels and slices created by calls to make();
181    - allocations to construct an interface;
182    - allocations caused by conversions, e.g. []byte(str).
183    - arrays allocated by calls to append();
184
185 Many objects have no Go types.  For example, the func, map and chan type
186 kinds in Go are all varieties of pointers, but their respective objects
187 are actual functions (executable code), maps (hash tables), and channels
188 (synchronized queues).  Given the way we model interfaces, they too are
189 pointers to "tagged" objects with no Go type.  And an *ssa.Global denotes
190 the address of a global variable, but the object for a Global is the
191 actual data.  So, the types of an ssa.Value that creates an object is
192 "off by one indirection": a pointer to the object.
193
194 The individual nodes of an object are sometimes referred to as "labels".
195
196 For uniformity, all objects have a non-zero number of fields, even those
197 of the empty type struct{}.  (All arrays are treated as if of length 1,
198 so there are no empty arrays.  The empty tuple is never address-taken,
199 so is never an object.)
200
201
202 TAGGED OBJECTS
203
204 An tagged object has the following layout:
205
206     T          -- obj.flags ⊇ {otTagged}
207     v
208     ...
209
210 The T node's typ field is the dynamic type of the "payload": the value
211 v which follows, flattened out.  The T node's obj has the otTagged
212 flag.
213
214 Tagged objects are needed when generalizing across types: interfaces,
215 reflect.Values, reflect.Types.  Each of these three types is modelled
216 as a pointer that exclusively points to tagged objects.
217
218 Tagged objects may be indirect (obj.flags ⊇ {otIndirect}) meaning that
219 the value v is not of type T but *T; this is used only for
220 reflect.Values that represent lvalues.  (These are not implemented yet.)
221
222
223 ANALYSIS ABSTRACTION OF EACH TYPE
224
225 Variables of the following "scalar" types may be represented by a
226 single node: basic types, pointers, channels, maps, slices, 'func'
227 pointers, interfaces.
228
229 Pointers
230   Nothing to say here, oddly.
231
232 Basic types (bool, string, numbers, unsafe.Pointer)
233   Currently all fields in the flattening of a type, including
234   non-pointer basic types such as int, are represented in objects and
235   values.  Though non-pointer nodes within values are uninteresting,
236   non-pointer nodes in objects may be useful (if address-taken)
237   because they permit the analysis to deduce, in this example,
238
239      var s struct{ ...; x int; ... }
240      p := &s.x
241
242   that p points to s.x.  If we ignored such object fields, we could only
243   say that p points somewhere within s.
244
245   All other basic types are ignored.  Expressions of these types have
246   zero nodeid, and fields of these types within aggregate other types
247   are omitted.
248
249   unsafe.Pointers are not modelled as pointers, so a conversion of an
250   unsafe.Pointer to *T is (unsoundly) treated equivalent to new(T).
251
252 Channels
253   An expression of type 'chan T' is a kind of pointer that points
254   exclusively to channel objects, i.e. objects created by MakeChan (or
255   reflection).
256
257   'chan T' is treated like *T.
258   *ssa.MakeChan is treated as equivalent to new(T).
259   *ssa.Send and receive (*ssa.UnOp(ARROW)) and are equivalent to store
260    and load.
261
262 Maps
263   An expression of type 'map[K]V' is a kind of pointer that points
264   exclusively to map objects, i.e. objects created by MakeMap (or
265   reflection).
266
267   map K[V] is treated like *M where M = struct{k K; v V}.
268   *ssa.MakeMap is equivalent to new(M).
269   *ssa.MapUpdate is equivalent to *y=x where *y and x have type M.
270   *ssa.Lookup is equivalent to y=x.v where x has type *M.
271
272 Slices
273   A slice []T, which dynamically resembles a struct{array *T, len, cap int},
274   is treated as if it were just a *T pointer; the len and cap fields are
275   ignored.
276
277   *ssa.MakeSlice is treated like new([1]T): an allocation of a
278    singleton array.
279   *ssa.Index on a slice is equivalent to a load.
280   *ssa.IndexAddr on a slice returns the address of the sole element of the
281   slice, i.e. the same address.
282   *ssa.Slice is treated as a simple copy.
283
284 Functions
285   An expression of type 'func...' is a kind of pointer that points
286   exclusively to function objects.
287
288   A function object has the following layout:
289
290      identity         -- typ:*types.Signature; obj.flags ⊇ {otFunction}
291      params_0         -- (the receiver, if a method)
292      ...
293      params_n-1
294      results_0
295      ...
296      results_m-1
297
298   There may be multiple function objects for the same *ssa.Function
299   due to context-sensitive treatment of some functions.
300
301   The first node is the function's identity node.
302   Associated with every callsite is a special "targets" variable,
303   whose pts() contains the identity node of each function to which
304   the call may dispatch.  Identity words are not otherwise used during
305   the analysis, but we construct the call graph from the pts()
306   solution for such nodes.
307
308   The following block of contiguous nodes represents the flattened-out
309   types of the parameters ("P-block") and results ("R-block") of the
310   function object.
311
312   The treatment of free variables of closures (*ssa.FreeVar) is like
313   that of global variables; it is not context-sensitive.
314   *ssa.MakeClosure instructions create copy edges to Captures.
315
316   A Go value of type 'func' (i.e. a pointer to one or more functions)
317   is a pointer whose pts() contains function objects.  The valueNode()
318   for an *ssa.Function returns a singleton for that function.
319
320 Interfaces
321   An expression of type 'interface{...}' is a kind of pointer that
322   points exclusively to tagged objects.  All tagged objects pointed to
323   by an interface are direct (the otIndirect flag is clear) and
324   concrete (the tag type T is not itself an interface type).  The
325   associated ssa.Value for an interface's tagged objects may be an
326   *ssa.MakeInterface instruction, or nil if the tagged object was
327   created by an instrinsic (e.g. reflection).
328
329   Constructing an interface value causes generation of constraints for
330   all of the concrete type's methods; we can't tell a priori which
331   ones may be called.
332
333   TypeAssert y = x.(T) is implemented by a dynamic constraint
334   triggered by each tagged object O added to pts(x): a typeFilter
335   constraint if T is an interface type, or an untag constraint if T is
336   a concrete type.  A typeFilter tests whether O.typ implements T; if
337   so, O is added to pts(y).  An untagFilter tests whether O.typ is
338   assignable to T,and if so, a copy edge O.v -> y is added.
339
340   ChangeInterface is a simple copy because the representation of
341   tagged objects is independent of the interface type (in contrast
342   to the "method tables" approach used by the gc runtime).
343
344   y := Invoke x.m(...) is implemented by allocating contiguous P/R
345   blocks for the callsite and adding a dynamic rule triggered by each
346   tagged object added to pts(x).  The rule adds param/results copy
347   edges to/from each discovered concrete method.
348
349   (Q. Why do we model an interface as a pointer to a pair of type and
350   value, rather than as a pair of a pointer to type and a pointer to
351   value?
352   A. Control-flow joins would merge interfaces ({T1}, {V1}) and ({T2},
353   {V2}) to make ({T1,T2}, {V1,V2}), leading to the infeasible and
354   type-unsafe combination (T1,V2).  Treating the value and its concrete
355   type as inseparable makes the analysis type-safe.)
356
357 reflect.Value
358   A reflect.Value is modelled very similar to an interface{}, i.e. as
359   a pointer exclusively to tagged objects, but with two generalizations.
360
361   1) a reflect.Value that represents an lvalue points to an indirect
362      (obj.flags ⊇ {otIndirect}) tagged object, which has a similar
363      layout to an tagged object except that the value is a pointer to
364      the dynamic type.  Indirect tagged objects preserve the correct
365      aliasing so that mutations made by (reflect.Value).Set can be
366      observed.
367
368      Indirect objects only arise when an lvalue is derived from an
369      rvalue by indirection, e.g. the following code:
370
371         type S struct { X T }
372         var s S
373         var i interface{} = &s    // i points to a *S-tagged object (from MakeInterface)
374         v1 := reflect.ValueOf(i)  // v1 points to same *S-tagged object as i
375         v2 := v1.Elem()           // v2 points to an indirect S-tagged object, pointing to s
376         v3 := v2.FieldByName("X") // v3 points to an indirect int-tagged object, pointing to s.X
377         v3.Set(y)                 // pts(s.X) ⊇ pts(y)
378
379      Whether indirect or not, the concrete type of the tagged object
380      corresponds to the user-visible dynamic type, and the existence
381      of a pointer is an implementation detail.
382
383      (NB: indirect tagged objects are not yet implemented)
384
385   2) The dynamic type tag of a tagged object pointed to by a
386      reflect.Value may be an interface type; it need not be concrete.
387
388      This arises in code such as this:
389         tEface := reflect.TypeOf(new(interface{}).Elem() // interface{}
390         eface := reflect.Zero(tEface)
391      pts(eface) is a singleton containing an interface{}-tagged
392      object.  That tagged object's payload is an interface{} value,
393      i.e. the pts of the payload contains only concrete-tagged
394      objects, although in this example it's the zero interface{} value,
395      so its pts is empty.
396
397 reflect.Type
398   Just as in the real "reflect" library, we represent a reflect.Type
399   as an interface whose sole implementation is the concrete type,
400   *reflect.rtype.  (This choice is forced on us by go/types: clients
401   cannot fabricate types with arbitrary method sets.)
402
403   rtype instances are canonical: there is at most one per dynamic
404   type.  (rtypes are in fact large structs but since identity is all
405   that matters, we represent them by a single node.)
406
407   The payload of each *rtype-tagged object is an *rtype pointer that
408   points to exactly one such canonical rtype object.  We exploit this
409   by setting the node.typ of the payload to the dynamic type, not
410   '*rtype'.  This saves us an indirection in each resolution rule.  As
411   an optimisation, *rtype-tagged objects are canonicalized too.
412
413
414 Aggregate types:
415
416 Aggregate types are treated as if all directly contained
417 aggregates are recursively flattened out.
418
419 Structs
420   *ssa.Field y = x.f creates a simple edge to y from x's node at f's offset.
421
422   *ssa.FieldAddr y = &x->f requires a dynamic closure rule to create
423    simple edges for each struct discovered in pts(x).
424
425   The nodes of a struct consist of a special 'identity' node (whose
426   type is that of the struct itself), followed by the nodes for all
427   the struct's fields, recursively flattened out.  A pointer to the
428   struct is a pointer to its identity node.  That node allows us to
429   distinguish a pointer to a struct from a pointer to its first field.
430
431   Field offsets are logical field offsets (plus one for the identity
432   node), so the sizes of the fields can be ignored by the analysis.
433
434   (The identity node is non-traditional but enables the distinction
435   described above, which is valuable for code comprehension tools.
436   Typical pointer analyses for C, whose purpose is compiler
437   optimization, must soundly model unsafe.Pointer (void*) conversions,
438   and this requires fidelity to the actual memory layout using physical
439   field offsets.)
440
441   *ssa.Field y = x.f creates a simple edge to y from x's node at f's offset.
442
443   *ssa.FieldAddr y = &x->f requires a dynamic closure rule to create
444    simple edges for each struct discovered in pts(x).
445
446 Arrays
447   We model an array by an identity node (whose type is that of the
448   array itself) followed by a node representing all the elements of
449   the array; the analysis does not distinguish elements with different
450   indices.  Effectively, an array is treated like struct{elem T}, a
451   load y=x[i] like y=x.elem, and a store x[i]=y like x.elem=y; the
452   index i is ignored.
453
454   A pointer to an array is pointer to its identity node.  (A slice is
455   also a pointer to an array's identity node.)  The identity node
456   allows us to distinguish a pointer to an array from a pointer to one
457   of its elements, but it is rather costly because it introduces more
458   offset constraints into the system.  Furthermore, sound treatment of
459   unsafe.Pointer would require us to dispense with this node.
460
461   Arrays may be allocated by Alloc, by make([]T), by calls to append,
462   and via reflection.
463
464 Tuples (T, ...)
465   Tuples are treated like structs with naturally numbered fields.
466   *ssa.Extract is analogous to *ssa.Field.
467
468   However, tuples have no identity field since by construction, they
469   cannot be address-taken.
470
471
472 FUNCTION CALLS
473
474   There are three kinds of function call:
475   (1) static "call"-mode calls of functions.
476   (2) dynamic "call"-mode calls of functions.
477   (3) dynamic "invoke"-mode calls of interface methods.
478   Cases 1 and 2 apply equally to methods and standalone functions.
479
480   Static calls.
481     A static call consists three steps:
482     - finding the function object of the callee;
483     - creating copy edges from the actual parameter value nodes to the
484       P-block in the function object (this includes the receiver if
485       the callee is a method);
486     - creating copy edges from the R-block in the function object to
487       the value nodes for the result of the call.
488
489     A static function call is little more than two struct value copies
490     between the P/R blocks of caller and callee:
491
492        callee.P = caller.P
493        caller.R = callee.R
494
495     Context sensitivity
496
497       Static calls (alone) may be treated context sensitively,
498       i.e. each callsite may cause a distinct re-analysis of the
499       callee, improving precision.  Our current context-sensitivity
500       policy treats all intrinsics and getter/setter methods in this
501       manner since such functions are small and seem like an obvious
502       source of spurious confluences, though this has not yet been
503       evaluated.
504
505   Dynamic function calls
506
507     Dynamic calls work in a similar manner except that the creation of
508     copy edges occurs dynamically, in a similar fashion to a pair of
509     struct copies in which the callee is indirect:
510
511        callee->P = caller.P
512        caller.R = callee->R
513
514     (Recall that the function object's P- and R-blocks are contiguous.)
515
516   Interface method invocation
517
518     For invoke-mode calls, we create a params/results block for the
519     callsite and attach a dynamic closure rule to the interface.  For
520     each new tagged object that flows to the interface, we look up
521     the concrete method, find its function object, and connect its P/R
522     blocks to the callsite's P/R blocks, adding copy edges to the graph
523     during solving.
524
525   Recording call targets
526
527     The analysis notifies its clients of each callsite it encounters,
528     passing a CallSite interface.  Among other things, the CallSite
529     contains a synthetic constraint variable ("targets") whose
530     points-to solution includes the set of all function objects to
531     which the call may dispatch.
532
533     It is via this mechanism that the callgraph is made available.
534     Clients may also elect to be notified of callgraph edges directly;
535     internally this just iterates all "targets" variables' pts(·)s.
536
537
538 PRESOLVER
539
540 We implement Hash-Value Numbering (HVN), a pre-solver constraint
541 optimization described in Hardekopf & Lin, SAS'07.  This is documented
542 in more detail in hvn.go.  We intend to add its cousins HR and HU in
543 future.
544
545
546 SOLVER
547
548 The solver is currently a naive Andersen-style implementation; it does
549 not perform online cycle detection, though we plan to add solver
550 optimisations such as Hybrid- and Lazy- Cycle Detection from (Hardekopf
551 & Lin, PLDI'07).
552
553 It uses difference propagation (Pearce et al, SQC'04) to avoid
554 redundant re-triggering of closure rules for values already seen.
555
556 Points-to sets are represented using sparse bit vectors (similar to
557 those used in LLVM and gcc), which are more space- and time-efficient
558 than sets based on Go's built-in map type or dense bit vectors.
559
560 Nodes are permuted prior to solving so that object nodes (which may
561 appear in points-to sets) are lower numbered than non-object (var)
562 nodes.  This improves the density of the set over which the PTSs
563 range, and thus the efficiency of the representation.
564
565 Partly thanks to avoiding map iteration, the execution of the solver is
566 100% deterministic, a great help during debugging.
567
568
569 FURTHER READING
570
571 Andersen, L. O. 1994. Program analysis and specialization for the C
572 programming language. Ph.D. dissertation. DIKU, University of
573 Copenhagen.
574
575 David J. Pearce, Paul H. J. Kelly, and Chris Hankin. 2004.  Efficient
576 field-sensitive pointer analysis for C. In Proceedings of the 5th ACM
577 SIGPLAN-SIGSOFT workshop on Program analysis for software tools and
578 engineering (PASTE '04). ACM, New York, NY, USA, 37-42.
579 http://doi.acm.org/10.1145/996821.996835
580
581 David J. Pearce, Paul H. J. Kelly, and Chris Hankin. 2004. Online
582 Cycle Detection and Difference Propagation: Applications to Pointer
583 Analysis. Software Quality Control 12, 4 (December 2004), 311-337.
584 http://dx.doi.org/10.1023/B:SQJO.0000039791.93071.a2
585
586 David Grove and Craig Chambers. 2001. A framework for call graph
587 construction algorithms. ACM Trans. Program. Lang. Syst. 23, 6
588 (November 2001), 685-746.
589 http://doi.acm.org/10.1145/506315.506316
590
591 Ben Hardekopf and Calvin Lin. 2007. The ant and the grasshopper: fast
592 and accurate pointer analysis for millions of lines of code. In
593 Proceedings of the 2007 ACM SIGPLAN conference on Programming language
594 design and implementation (PLDI '07). ACM, New York, NY, USA, 290-299.
595 http://doi.acm.org/10.1145/1250734.1250767
596
597 Ben Hardekopf and Calvin Lin. 2007. Exploiting pointer and location
598 equivalence to optimize pointer analysis. In Proceedings of the 14th
599 international conference on Static Analysis (SAS'07), Hanne Riis
600 Nielson and Gilberto Filé (Eds.). Springer-Verlag, Berlin, Heidelberg,
601 265-280.
602
603 Atanas Rountev and Satish Chandra. 2000. Off-line variable substitution
604 for scaling points-to analysis. In Proceedings of the ACM SIGPLAN 2000
605 conference on Programming language design and implementation (PLDI '00).
606 ACM, New York, NY, USA, 47-56. DOI=10.1145/349299.349310
607 http://doi.acm.org/10.1145/349299.349310
608
609 */
610 package pointer // import "golang.org/x/tools/go/pointer"