Giant blob of minor changes
[dotfiles/.git] / .config / coc / extensions / coc-go-data / tools / pkg / mod / golang.org / x / tools@v0.0.0-20201105173854-bc9fc8d8c4bc / internal / apidiff / README.md
1 # Checking Go Package API Compatibility
2
3 The `apidiff` tool in this directory determines whether two versions of the same
4 package are compatible. The goal is to help the developer make an informed
5 choice of semantic version after they have changed the code of their module.
6
7 `apidiff` reports two kinds of changes: incompatible ones, which require
8 incrementing the major part of the semantic version, and compatible ones, which
9 require a minor version increment. If no API changes are reported but there are
10 code changes that could affect client code, then the patch version should
11 be incremented.
12
13 Because `apidiff` ignores package import paths, it may be used to display API
14 differences between any two packages, not just different versions of the same
15 package.
16
17 The current version of `apidiff` compares only packages, not modules.
18
19
20 ## Compatibility Desiderata
21
22 Any tool that checks compatibility can offer only an approximation. No tool can
23 detect behavioral changes; and even if it could, whether a behavioral change is
24 a breaking change or not depends on many factors, such as whether it closes a
25 security hole or fixes a bug. Even a change that causes some code to fail to
26 compile may not be considered a breaking change by the developers or their
27 users. It may only affect code marked as experimental or unstable, for
28 example, or the break may only manifest in unlikely cases.
29
30 For a tool to be useful, its notion of compatibility must be relaxed enough to
31 allow reasonable changes, like adding a field to a struct, but strict enough to
32 catch significant breaking changes. A tool that is too lax will miss important
33 incompatibilities, and users will stop trusting it; one that is too strict may
34 generate so much noise that users will ignore it.
35
36 To a first approximation, this tool reports a change as incompatible if it could
37 cause client code to stop compiling. But `apidiff` ignores five ways in which
38 code may fail to compile after a change. Three of them are mentioned in the
39 [Go 1 Compatibility Guarantee](https://golang.org/doc/go1compat).
40
41 ### Unkeyed Struct Literals
42
43 Code that uses an unkeyed struct literal would fail to compile if a field was
44 added to the struct, making any such addition an incompatible change. An example:
45
46 ```
47 // old
48 type Point struct { X, Y int }
49
50 // new
51 type Point struct { X, Y, Z int }
52
53 // client
54 p := pkg.Point{1, 2} // fails in new because there are more fields than expressions
55 ```
56 Here and below, we provide three snippets: the code in the old version of the
57 package, the code in the new version, and the code written in a client of the package,
58 which refers to it by the name `pkg`. The client code compiles against the old
59 code but not the new.
60
61 ### Embedding and Shadowing
62
63 Adding an exported field to a struct can break code that embeds that struct,
64 because the newly added field may conflict with an identically named field
65 at the same struct depth. A selector referring to the latter would become
66 ambiguous and thus erroneous.
67
68
69 ```
70 // old
71 type Point struct { X, Y int }
72
73 // new
74 type Point struct { X, Y, Z int }
75
76 // client
77 type z struct { Z int }
78
79 var v struct {
80     pkg.Point
81     z
82 }
83
84 _ = v.Z // fails in new
85 ```
86 In the new version, the last line fails to compile because there are two embedded `Z`
87 fields at the same depth, one from `z` and one from `pkg.Point`.
88
89
90 ### Using an Identical Type Externally
91
92 If it is possible for client code to write a type expression representing the
93 underlying type of a defined type in a package, then external code can use it in
94 assignments involving the package type, making any change to that type incompatible.
95 ```
96 // old
97 type Point struct { X, Y int }
98
99 // new
100 type Point struct { X, Y, Z int }
101
102 // client
103 var p struct { X, Y int } = pkg.Point{} // fails in new because of Point's extra field
104 ```
105 Here, the external code could have used the provided name `Point`, but chose not
106 to. I'll have more to say about this and related examples later.
107
108 ### unsafe.Sizeof and Friends
109
110 Since `unsafe.Sizeof`, `unsafe.Offsetof` and `unsafe.Alignof` are constant
111 expressions, they can be used in an array type literal:
112
113 ```
114 // old
115 type S struct{ X int }
116
117 // new
118 type S struct{ X, y int }
119
120 // client
121 var a [unsafe.Sizeof(pkg.S{})]int = [8]int{} // fails in new because S's size is not 8
122 ```
123 Use of these operations could make many changes to a type potentially incompatible.
124
125
126 ### Type Switches
127
128 A package change that merges two different types (with same underlying type)
129 into a single new type may break type switches in clients that refer to both
130 original types:
131
132 ```
133 // old
134 type T1 int
135 type T2 int
136
137 // new
138 type T1 int
139 type T2 = T1
140
141 // client
142 switch x.(type) {
143 case T1:
144 case T2:
145 } // fails with new because two cases have the same type
146 ```
147 This sort of incompatibility is sufficiently esoteric to ignore; the tool allows
148 merging types.
149
150 ## First Attempt at a Definition
151
152 Our first attempt at defining compatibility captures the idea that all the
153 exported names in the old package must have compatible equivalents in the new
154 package.
155
156 A new package is compatible with an old one if and only if:
157 - For every exported package-level name in the old package, the same name is
158   declared in the new at package level, and
159 - the names denote the same kind of object (e.g. both are variables), and
160 - the types of the objects are compatible.
161
162 We will work out the details (and make some corrections) below, but it is clear
163 already that we will need to determine what makes two types compatible. And
164 whatever the definition of type compatibility, it's certainly true that if two
165 types are the same, they are compatible. So we will need to decide what makes an
166 old and new type the same. We will call this sameness relation _correspondence_.
167
168 ## Type Correspondence
169
170 Go already has a definition of when two types are the same:
171 [type identity](https://golang.org/ref/spec#Type_identity).
172 But identity isn't adequate for our purpose: it says that two defined
173 types are identical if they arise from the same definition, but it's unclear
174 what "same" means when talking about two different packages (or two versions of
175 a single package).
176
177 The obvious change to the definition of identity is to require that old and new
178 [defined types](https://golang.org/ref/spec#Type_definitions)
179 have the same name instead. But that doesn't work either, for two
180 reasons. First, type aliases can equate two defined types with different names:
181
182 ```
183 // old
184 type E int
185
186 // new
187 type t int
188 type E = t
189 ```
190 Second, an unexported type can be renamed:
191
192 ```
193 // old
194 type u1 int
195 var V u1
196
197 // new
198 type u2 int
199 var V u2
200 ```
201 Here, even though `u1` and `u2` are unexported, their exported fields and
202 methods are visible to clients, so they are part of the API. But since the name
203 `u1` is not visible to clients, it can be changed compatibly. We say that `u1`
204 and `u2` are _exposed_: a type is exposed if a client package can declare variables of that type.
205
206 We will say that an old defined type _corresponds_ to a new one if they have the
207 same name, or one can be renamed to the other without otherwise changing the
208 API. In the first example above, old `E` and new `t` correspond. In the second,
209 old `u1` and new `u2` correspond.
210
211 Two or more old defined types can correspond to a single new type: we consider
212 "merging" two types into one to be a compatible change. As mentioned above,
213 code that uses both names in a type switch will fail, but we deliberately ignore
214 this case. However, a single old type can correspond to only one new type.
215
216 So far, we've explained what correspondence means for defined types. To extend
217 the definition to all types, we parallel the language's definition of type
218 identity. So, for instance, an old and a new slice type correspond if their
219 element types correspond.
220
221 ## Definition of Compatibility
222
223 We can now present the definition of compatibility used by `apidiff`.
224
225 ### Package Compatibility
226
227 > A new package is compatible with an old one if:
228 >1. Each exported name in the old package's scope also appears in the new
229 >package's scope, and the object (constant, variable, function or type) denoted
230 >by that name in the old package is compatible with the object denoted by the
231 >name in the new package, and
232 >2. For every exposed type that implements an exposed interface in the old package,
233 > its corresponding type should implement the corresponding interface in the new package.
234 >
235 >Otherwise the packages are incompatible.
236
237 As an aside, the tool also finds exported names in the new package that are not
238 exported in the old, and marks them as compatible changes.
239
240 Clause 2 is discussed further in "Whole-Package Compatibility."
241
242 ### Object Compatibility
243
244 This section provides compatibility rules for constants, variables, functions
245 and types.
246
247 #### Constants
248
249 >A new exported constant is compatible with an old one of the same name if and only if
250 >1. Their types correspond, and
251 >2. Their values are identical.
252
253 It is tempting to allow changing a typed constant to an untyped one. That may
254 seem harmless, but it can break code like this:
255
256 ```
257 // old
258 const C int64 = 1
259
260 // new
261 const C = 1
262
263 // client
264 var x = C          // old type is int64, new is int
265 var y int64 = x // fails with new: different types in assignment
266 ```
267
268 A change to the value of a constant can break compatibility if the value is used
269 in an array type:
270
271 ```
272 // old
273 const C = 1
274
275 // new
276 const C = 2
277
278 // client
279 var a [C]int = [1]int{} // fails with new because [2]int and [1]int are different types
280 ```
281 Changes to constant values are rare, and determining whether they are compatible
282 or not is better left to the user, so the tool reports them.
283
284 #### Variables
285
286 >A new exported variable is compatible with an old one of the same name if and
287 >only if their types correspond.
288
289 Correspondence doesn't look past names, so this rule does not prevent adding a
290 field to `MyStruct` if the package declares `var V MyStruct`. It does, however, mean that
291
292 ```
293 var V struct { X int }
294 ```
295 is incompatible with
296 ```
297 var V struct { X, Y int }
298 ```
299 I discuss this at length below in the section "Compatibility, Types and Names."
300
301 #### Functions
302
303 >A new exported function or variable is compatible with an old function of the
304 >same name if and only if their types (signatures) correspond.
305
306 This rule captures the fact that, although many signature changes are compatible
307 for all call sites, none are compatible for assignment:
308
309 ```
310 var v func(int) = pkg.F
311 ```
312 Here, `F` must be of type `func(int)` and not, for instance, `func(...int)` or `func(interface{})`.
313
314 Note that the rule permits changing a function to a variable. This is a common
315 practice, usually done for test stubbing, and cannot break any code at compile
316 time.
317
318 #### Exported Types
319
320 > A new exported type is compatible with an old one if and only if their
321 > names are the same and their types correspond.
322
323 This rule seems far too strict. But, ignoring aliases for the moment, it demands only
324 that the old and new _defined_ types correspond. Consider:
325 ```
326 // old
327 type T struct { X int }
328
329 // new
330 type T struct { X, Y int }
331 ```
332 The addition of `Y` is a compatible change, because this rule does not require
333 that the struct literals have to correspond, only that the defined types
334 denoted by `T` must correspond. (Remember that correspondence stops at type
335 names.)
336
337 If one type is an alias that refers to the corresponding defined type, the
338 situation is the same:
339
340 ```
341 // old
342 type T struct { X int }
343
344 // new
345 type u struct { X, Y int }
346 type T = u
347 ```
348 Here, the only requirement is that old `T` corresponds to new `u`, not that the
349 struct types correspond. (We can't tell from this snippet that the old `T` and
350 the new `u` do correspond; that depends on whether `u` replaces `T` throughout
351 the API.)
352
353 However, the following change is incompatible, because the names do not
354 denote corresponding types:
355
356 ```
357 // old
358 type T = struct { X int }
359
360 // new
361 type T = struct { X, Y int }
362 ```
363 ### Type Literal Compatibility
364
365 Only five kinds of types can differ compatibly: defined types, structs,
366 interfaces, channels and numeric types. We only consider the compatibility of
367 the last four when they are the underlying type of a defined type. See
368 "Compatibility, Types and Names" for a rationale.
369
370 We justify the compatibility rules by enumerating all the ways a type
371 can be used, and by showing that the allowed changes cannot break any code that
372 uses values of the type in those ways.
373
374 Values of all types can be used in assignments (including argument passing and
375 function return), but we do not require that old and new types are assignment
376 compatible. That is because we assume that the old and new packages are never
377 used together: any given binary will link in either the old package or the new.
378 So in describing how a type can be used in the sections below, we omit
379 assignment.
380
381 Any type can also be used in a type assertion or conversion. The changes we allow
382 below may affect the run-time behavior of these operations, but they cannot affect
383 whether they compile. The only such breaking change would be to change
384 the type `T` in an assertion `x.T` so that it no longer implements the interface
385 type of `x`; but the rules for interfaces below disallow that.
386
387 > A new type is compatible with an old one if and only if they correspond, or
388 > one of the cases below applies.
389
390 #### Defined Types
391
392 Other than assignment, the only ways to use a defined type are to access its
393 methods, or to make use of the properties of its underlying type. Rule 2 below
394 covers the latter, and rules 3 and 4 cover the former.
395
396 > A new defined type is compatible with an old one if and only if all of the
397 > following hold:
398 >1. They correspond.
399 >2. Their underlying types are compatible.
400 >3. The new exported value method set is a superset of the old.
401 >4. The new exported pointer method set is a superset of the old.
402
403 An exported method set is a method set with all unexported methods removed.
404 When comparing methods of a method set, we require identical names and
405 corresponding signatures.
406
407 Removing an exported method is clearly a breaking change. But removing an
408 unexported one (or changing its signature) can be breaking as well, if it
409 results in the type no longer implementing an interface. See "Whole-Package
410 Compatibility," below.
411
412 #### Channels
413
414 > A new channel type is compatible with an old one if
415 >  1. The element types correspond, and
416 >  2. Either the directions are the same, or the new type has no direction.
417
418 Other than assignment, the only ways to use values of a channel type are to send
419 and receive on them, to close them, and to use them as map keys. Changes to a
420 channel type cannot cause code that closes a channel or uses it as a map key to
421 fail to compile, so we need not consider those operations.
422
423 Rule 1 ensures that any operations on the values sent or received will compile.
424 Rule 2 captures the fact that any program that compiles with a directed channel
425 must use either only sends, or only receives, so allowing the other operation
426 by removing the channel direction cannot break any code.
427
428
429 #### Interfaces
430
431 > A new interface is compatible with an old one if and only if:
432 > 1. The old interface does not have an unexported method, and it corresponds
433 >    to the new interfaces (i.e. they have the same method set), or
434 > 2. The old interface has an unexported method and the new exported method set is a
435 >    superset of the old.
436
437 Other than assignment, the only ways to use an interface are to implement it,
438 embed it, or call one of its methods. (Interface values can also be used as map
439 keys, but that cannot cause a compile-time error.)
440
441 Certainly, removing an exported method from an interface could break a client
442 call, so neither rule allows it.
443
444 Rule 1 also disallows adding a method to an interface without an existing unexported
445 method. Such an interface can be implemented in client code. If adding a method
446 were allowed, a type that implements the old interface could fail to implement
447 the new one:
448
449 ```
450 type I interface { M1() }         // old
451 type I interface { M1(); M2() }   // new
452
453 // client
454 type t struct{}
455 func (t) M1() {}
456 var i pkg.I = t{} // fails with new, because t lacks M2
457 ```
458
459 Rule 2 is based on the observation that if an interface has an unexported
460 method, the only way a client can implement it is to embed it.
461 Adding a method is compatible in this case, because the embedding struct will
462 continue to implement the interface. Adding a method also cannot break any call
463 sites, since no program that compiles could have any such call sites.
464
465 #### Structs
466
467 > A new struct is compatible with an old one if all of the following hold:
468 > 1. The new set of top-level exported fields is a superset of the old.
469 > 2. The new set of _selectable_ exported fields is a superset of the old.
470 > 3. If the old struct is comparable, so is the new one.
471
472 The set of selectable exported fields is the set of exported fields `F`
473 such that `x.F` is a valid selector expression for a value `x` of the struct
474 type. `F` may be at the top level of the struct, or it may be a field of an
475 embedded struct.
476
477 Two fields are the same if they have the same name and corresponding types.
478
479 Other than assignment, there are only four ways to use a struct: write a struct
480 literal, select a field, use a value of the struct as a map key, or compare two
481 values for equality. The first clause ensures that struct literals compile; the
482 second, that selections compile; and the third, that equality expressions and
483 map index expressions compile.
484
485 #### Numeric Types
486
487 > A new numeric type is compatible with an old one if and only if they are
488 > both unsigned integers, both signed integers, both floats or both complex
489 > types, and the new one is at least as large as the old on both 32-bit and
490 > 64-bit architectures.
491
492 Other than in assignments, numeric types appear in arithmetic and comparison
493 expressions. Since all arithmetic operations but shifts (see below) require that
494 operand types be identical, and by assumption the old and new types underly
495 defined types (see "Compatibility, Types and Names," below), there is no way for
496 client code to write an arithmetic expression that compiles with operands of the
497 old type but not the new.
498
499 Numeric types can also appear in type switches and type assertions. Again, since
500 the old and new types underly defined types, type switches and type assertions
501 that compiled using the old defined type will continue to compile with the new
502 defined type.
503
504 Going from an unsigned to a signed integer type is an incompatible change for
505 the sole reason that only an unsigned type can appear as the right operand of a
506 shift. If this rule is relaxed, then changes from an unsigned type to a larger
507 signed type would be compatible. See [this
508 issue](https://github.com/golang/go/issues/19113).
509
510 Only integer types can be used in bitwise and shift operations, and for indexing
511 slices and arrays. That is why switching from an integer to a floating-point
512 type--even one that can represent all values of the integer type--is an
513 incompatible change.
514
515
516 Conversions from floating-point to complex types or vice versa are not permitted
517 (the predeclared functions real, imag, and complex must be used instead). To
518 prevent valid floating-point or complex conversions from becoming invalid,
519 changing a floating-point type to a complex type or vice versa is considered an
520 incompatible change.
521
522 Although conversions between any two integer types are valid, assigning a
523 constant value to a variable of integer type that is too small to represent the
524 constant is not permitted. That is why the only compatible changes are to
525 a new type whose values are a superset of the old. The requirement that the new
526 set of values must include the old on both 32-bit and 64-bit machines allows
527 conversions from `int32` to `int` and from `int` to `int64`, but not the other
528 direction; and similarly for `uint`.
529
530 Changing a type to or from `uintptr` is considered an incompatible change. Since
531 its size is not specified, there is no way to know whether the new type's values
532 are a superset of the old type's.
533
534 ## Whole-Package Compatibility
535
536 Some changes that are compatible for a single type are not compatible when the
537 package is considered as a whole. For example, if you remove an unexported
538 method on a defined type, it may no longer implement an interface of the
539 package. This can break client code:
540
541 ```
542 // old
543 type T int
544 func (T) m() {}
545 type I interface { m() }
546
547 // new
548 type T int // no method m anymore
549
550 // client
551 var i pkg.I = pkg.T{} // fails with new because T lacks m
552 ```
553
554 Similarly, adding a method to an interface can cause defined types
555 in the package to stop implementing it.
556
557 The second clause in the definition for package compatibility handles these
558 cases. To repeat:
559 > 2. For every exposed type that implements an exposed interface in the old package,
560 > its corresponding type should implement the corresponding interface in the new package.
561 Recall that a type is exposed if it is part of the package's API, even if it is
562 unexported.
563
564 Other incompatibilities that involve more than one type in the package can arise
565 whenever two types with identical underlying types exist in the old or new
566 package. Here, a change "splits" an identical underlying type into two, breaking
567 conversions:
568
569 ```
570 // old
571 type B struct { X int }
572 type C struct { X int }
573
574 // new
575 type B struct { X int }
576 type C struct { X, Y int }
577
578 // client
579 var b B
580 _ = C(b) // fails with new: cannot convert B to C
581 ```
582 Finally, changes that are compatible for the package in which they occur can
583 break downstream packages. That can happen even if they involve unexported
584 methods, thanks to embedding.
585
586 The definitions given here don't account for these sorts of problems.
587
588
589 ## Compatibility, Types and Names 
590
591 The above definitions state that the only types that can differ compatibly are
592 defined types and the types that underly them. Changes to other type literals
593 are considered incompatible. For instance, it is considered an incompatible
594 change to add a field to the struct in this variable declaration:
595
596 ```
597 var V struct { X int }
598 ```
599 or this alias definition:
600 ```
601 type T = struct { X int }
602 ```
603
604 We make this choice to keep the definition of compatibility (relatively) simple.
605 A more precise definition could, for instance, distinguish between
606
607 ```
608 func F(struct { X int })
609 ```
610 where any changes to the struct are incompatible, and
611
612 ```
613 func F(struct { X, u int })
614 ```
615 where adding a field is compatible (since clients cannot write the signature,
616 and thus cannot assign `F` to a variable of the signature type). The definition
617 should then also allow other function signature changes that only require
618 call-site compatibility, like
619
620 ```
621 func F(struct { X, u int }, ...int)
622 ```
623 The result would be a much more complex definition with little benefit, since
624 the examples in this section rarely arise in practice.